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ABSTRACT

Practically all engineering applications require knowledge of uncertainty. Accurately

quantifying uncertainty within engineering problems supports model development, poten-

tially leading to identification of key risk factors or cost reductions. Often the full problem

requires modeling behavior of materials or structures from the quantum scale all the way up

to the macroscopic scale. Predicting such behavior can be extremely complex, and uncer-

tainty in modeling is often increased due to necessary assumptions. We plan to demonstrate

the benefits of performing uncertainty analysis on engineering problems, specifically in the

development of constitutive relations and structural analysis of smart materials and adap-

tive structures. This will be highlighted by a discussion of ferroelectric materials and their

domain structure interaction, as well as dielectric elastomers’ viscoelastic and electrostrictive

properties.
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CHAPTER 1

INTRODUCTION

Mechanical engineering covers a broad array of topics. Inherent in these areas is the need

to accurately model and predict physical behavior. Many tools exist for model development

and calibration; however, few offer the ability to quantify underlying uncertainty within

the model as well as experimental measurements. Uncertainty analysis is often minimal or

completely overlooked in the realm of material design. The uncertainty that exists in these

types of problems can be clearly shown, and often the results of such analysis can provide

guidance towards enhancing our understanding of material physics and structural engineering

predictions. We propose to show the diverse range of applications in which uncertainty

quantification techniques may be applied in the context of engineering mechanics, starting

from constitutive modeling all the way up to structural modeling.

1.1 Dielectric Elastomers

Dielectric elastomers are a subset of materials known as active polymers, which are

commonly used in adaptive structures. Active polymers provide unique capabilities for real

time control of a structure’s shape, stiffness, or damping [5, 74]. In such applications it is

extremely important to have knowledge of the viscoelastic constitutive behavior, particularly

in instances where actuator control or dynamic tunability is of critical importance. The

actuation mechanism is different depending on which type of polymer is considered. In the

case of dielectric elastomers, the material deforms proportionally to the square of the applied

field. This type of behavior is typically called electrostriction. The material deforms as a

result of competing mechanisms between the solid material’s elasticity and the attractive

Lorentz forces that exist due to the applied field. The membrane is compressed in the

direction of the applied field due to the electrostatic stress generated by the unlike charges.
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This stress leads to contraction of the membrane parallel to the field and expansion in the

perpendicular directions.

A good description of the dielectric elastomer and electrodes is given by a parallel plate

capacitor. The distance between the plates is filled by the elastomer, but as a result of

increased electrostatic forces, the distance between the two plates reduces. Due to the

near incompressible nature of the material, the capacitance of the membrane is directly

related to the square of the planar area, making these materials a viable form of a pressure

sensor [22,60]. As opposed to many other smart materials, dielectric elastomers can be used

for mechanical work without large power supplies or magnetic coils. Due to their light weight

and intrinsic material properties, active polymers have begun to serve as viable options for

artificial muscles [5].

Dielectric elastomers are a part of a broad range of materials used in a variety of applica-

tions. Several specific areas in which dielectric elastomers have been or could be potentially

applied include robotics [36, 61, 62], optical switches and speakers [3, 57], and prosthetic

pumps [24]. These materials provide a unique combination of being able to withstand large

deformation while being lightweight. Furthermore, these materials can be controlled by vary-

ing the application of electric field across the membrane. This make these materials ideally

suitable for applications in robotic structures where they are used to emulate artificial mus-

cle. Often these elastomers operate over a broad range of deformation rates, experiencing

complex viscoelastic behavior [17, 70]. Therefore, knowledge of the viscoelastic constitutive

behavior is critically important. Developing a model that accounts for this broad range of

time scales is non-trivial, and uncertainty analysis provides insight into understanding and

characterizing this complex behavior. Very High Bond (VHB) 4910, made by 3M, is a dielec-

tric elastomer and previous research has shown the effectiveness of a non-linear viscoelastic

model in capturing the behavior of VHB 4910 [50], but robust predictions for the material

behavior over a large range of deformation rates is still an open challenge. In Chapter 3

we present the results from modeling the viscoelastic behavior using integer order calculus

operations. An alternative approach is presented in Chapter 4 which highlights the potential
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usefulness of using fractional order calculus operations to predict a material’s viscoelastic

response.

Understanding material constitutive behavior does not completely characterize a prob-

lem. Often, the material is implemented on a structure where it works with other materials

as a system or device. Structural modeling must also be understood in order to better char-

acterize and quantify the uncertainty in these engineering systems and devices. For example

dielectric elastomers are often implemented on robotic platforms. Using Bayesian statistical

methods, we considered the behavior of the dielectric elastomer VHB 4910 when bi-axially

pre-stretched and exposed to transverse loading as well as different electrostatic fields [49].

The preliminary results for this research are presented in Chapter 5. On-going research is

focused on a solution that completely characterizes the electromechanical behavior over the

range of testing conditions.

1.2 Ferroelectric Materials

Ferroelectricity defines a class of materials that respond mechanically to the presence

of an electric field and conversely can generate charge when stressed. Within an unpoled

ferroelectric material there are many regions of randomly aligned dipoles, yet the macroscopic

polarization is zero [42]. Upon application of an electric field these dipoles can be oriented

to partially align with the applied electric field. Furthermore, after the applied electric field

is reduced to zero, the material maintains a finite polarization. This ability to control the

electronic structure makes ferroelectrics prevalent in sensor and actuator applications [74].

One common application is in capacitors where the nonlinear ferroelectric properties allow

for capacitance tuning.

A piezoelectric material differs from ordinary solids in that upon application of stress,

there is a proportional strain and also the creation of electric charge. Furthermore, this effect

works in both directions, so the application of an electric field yields a corresponding change

in strain and stress. Piezoelectric ceramics typically have dielectric constants on the order

of several hundred to several thousand [35]. A similar phenomenon occurs in pyroelectric

materials where an electric charge is developed as a result of uniform heating. Note, that the
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unique aspect of pyroelectrics is that a charge is developed as a result of uniform heating,

as any piezolectric crystal will develop charge in the presence of non-uniform heating. All

ferroelectric materials have the properties of a piezoelectric and pyroelectric solid, but with

the additional ability to reverse their polarization in the presence of an electric field.

Ferroelectric materials are well established in engineering applications, including energy

harvesting [77], structural health monitoring [58], flow-control [7, 9, 39], transportation [53],

and robotic structures [30, 64, 83, 84]. Further discussion related to the various applications

in which ferroelectric materials are an active component can be found in [12,41,74,76,79–81].

Accurately predicting the constitutive behavior of these materials from the atomic scale all

the way up to a macroscopic continuum is important in light of their impact in active struc-

tures and systems. Several methods exist to predict the material behavior at one particular

scale, but many methods become inaccurate at higher length scales where homogenization

produces loss of information. We propose to analyze the domain structure characteristics

predicted from density functional theory (DFT) calculations versus a continuum phase field

model. This analysis will assess uncertainty by quantifying the input model parameter prob-

abilities using Bayesian statistical methods. The theoretical framework for this study is

outlined in Chapter 6 and the uncertainty analysis is presented in Chapter 7.

1.3 Uncertainty Quantification

Depending on the problem being considered or the quantity of interest (QoI), different

uncertainty quantification techniques are more appropriate than others. Often uncertainty

in the input is known (or attainable), and the resulting uncertainty in the model output is of

interest. This is especially important in the design process. Understanding the relationship

between model input uncertainty and model output can drastically affect the design choice.

This type of analysis is typically done for models that are amenable to Monte Carlo sam-

pling (i.e., many evaluations can be taken in a short amount of time). The forward model

approach of simply propagating uncertainty though the model allows tuning of input param-

eter uncertainty to achieve the desired output. This is especially important in engineering

applications where input uncertainty is often directly correlated with costs. Decreasing the
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uncertainty in the input parameters typically requires increased costs, which is especially

relevant with regard to manufacturing methods. Decreasing the tolerance on dimensions,

surface properties, etc., can be expensive. Finding the optimal input to decrease costs but

achieve the desired output is an important problem. Of course most models have many input

parameters, which makes solving these problems non-trivial. This highlights the importance

of combining sensitivity analysis along with uncertainty quantification. As opposed to this

forward model approach, one can, alternatively, consider the case of inverse problems.

For problems in which experimental data or high-fidelity simulations exist, one can at-

tempt to identify uncertainty in the model input parameters based on the model output.

This constitutes a class of inverse problems in which input parameters are assumed uncertain

(stochastic variables) and their underlying distributions (posterior densities) are ascertained

through a sampling technique. We propose to employ a Markov Chain Monte Carlo (MCMC)

algorithm, coupled with the delayed rejection adaptive Metropolis (DRAM) sampling tech-

nique, in order to quantify uncertainty in the model parameters [26, 27]. This approach

employs Bayesian statistical analysis, which will be discussed in more detail in Chapter 2.

1.4 Motivation

The goal of this research is to apply uncertainty quantification techniques to smart ma-

terial and adaptive structure engineering problems to gain insight into model limitations

and enhance model prediction in light of limited information. Furthermore, applying these

principles during the design process enhances our understanding of the material physics,

especially with regard to characterization. Calculating the uncertainty and propagating it

through a model allows us to see the effect of lack of knowledge or random error on the

system. The advantage of this approach is that we are given more realistic bounds on the

limits of our model and can use this information to refine our methods to potentially improve

predictions over broader operating regimes.
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CHAPTER 2

UNCERTAINTY QUANTIFICATION

2.1 Bayesian Statistical Analysis

When considering the value of unknown model parameters, there are several approaches

for parameter estimation. Determining model parameters in light of data or high-fidelity

simulations is called model calibration. Oftentimes these parameters are considered to be

deterministic and are found by performing a basic curve fitting algorithm. Bayesian model

calibration employs a different approach to parameter calibration, acknowledging the exis-

tence of uncertainty due to model discrepancies and observation errors associated with data.

By using this Bayesian approach and taking the parameters to be stochastic variables instead

of fixed values, one can quantify the inherent uncertainty attributed to such parameters in

light of data or higher fidelity models.

Because model parameters are found using data, this is what is called an inverse prob-

lem. As such, it is important to test the results of the model against untrained boundary

conditions. In other words, the model may agree well with the data used to calibrate the

parameters because by definition those parameters were found such that they fit that par-

ticular data. Therefore, the true strength of the model is best considered in light of model

prediction, how well does the model predict the quantity of interest for different data sets.

Based on the quantity of interest, a statistical model is employed

Mdata(i) = M(i; θ) + ǫi, i = 1, ..., N (2.1)

where Mdata(i) and ǫi are random variables denoting the ith experimental data point and

associated observation error, respectively. The parameter-dependent model response is given

by M(i; θ), where θ denotes the unknown parameters. Essentially, we expect the data to be

distributed about the model response within some random noise defined by ǫi. These ob-

servation errors constitute measurement errors inherent in measurement devices, variability
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between test specimens, and also model discrepancies due to limitations in physical models.

The statistical model assumes that the observation errors are independent and identically

distributed (iid).

To determine the parameter distributions, Bayesian model calibration uses Bayes’ relation

π(θ|Mdata) =
p(M |θ)π0(θ)∫

Rp
p(M |θ)π0(θ)dθ

(2.2)

where π(θ|Mdata) is called the posterior density. The posterior density quantifies the proba-

bility of observing parameter values θ given the data Mdata. Bayes’ relation comes directly

from the formal definitions of conditional probability and the product rule of probability.

The relation incorporates a priori knowledge about the parameters in the prior density,

π0(θ). The prior is updated by using the likelihood p(M |θ), which incorporates information

provided by the model and data. The denominator normalizes the posterior density to have

an area of unity.

One must be careful in initializing the prior density in order not to bias the posterior.

Often model parameters have some physical constraints (e.g., positivity, ∈ [0,∞], etc.). To

ensure noninformative priors, a uniform distribution across the feasible parameter space is

often assumed. The other part of Bayes’ relation that we must consider is the likelihood

function. In order to construct the likelihood function, assumptions must be made about

the observation errors, ǫi. It is assumed that the observation errors are independent and

identically distributed (iid) and ǫi ∼ N(0, σ2), yielding a Gaussian likelihood

p(M |θ) = e−
PN

i=1
[Mdata(i)−M(i;θ)]/(2σ2). (2.3)

This corresponds with the fact that the observed data is independent and normally dis-

tributed with Mdata(i) ∼ N(M(i; θ), σ2), which comes from (2.1). Note that the variance,

σ2, can be inferred with the other calibration parameters, θ. The variance estimates the

error in observations, which for some experiments may be known (although that is not often

the case). Using the statistical model we must now employ a sampling method to develop

the posterior densities.
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2.1.1 Markov Chain Monte Carlo (MCMC)

For a moderate number of parameters, p, one can employ a sparse grid quadrature tech-

nique; however, for larger p, Monte Carlo integration techniques are required. Pure Monte

Carlo presents some difficulties, so the alternative approach used here is the Markov Chain

Monte Carlo (MCMC) method. When sampling it is important to use a method that will

adequately explore the sample space. By constructing a Markov chain whose stationary

distribution is the posterior density, we can ensure that the geometry of the distribution

is adequately explored [75]. In addition to exploring the sample space, the problem is

complicated by the fact that model parameters are often correlated. The MCMC method

accomodates the potential correlative nature of the problem, making it an ideal choice for

engineering analysis.

2.1.2 Delayed Rejection Adaptive Metropolis (DRAM)

As part of our sampling routine, we will also employ the delayed rejection adaptive

Metropolis (DRAM) algorithm [26, 27]. The combination of delayed rejection (DR) and

adaptive metropolis (AM) provides complementary mechanisms for updating the parameter

values [75]. The Metropolis algorithm accepts chain candidates, θnew, based on

α(θnew|θold) = min(1,
p(M |θnew)

p(M |θold)
). (2.4)

This essentially says that the new chain value is accepted with probability α, where α is the

minimum between 1 and the ratio of the likelihood functions. From (2.3) we see that the

ratio in likelihoods will be less than 1 when the new chain value increases the error measure

compared to the current chain value. So, AM says that the new chain candidate is automat-

ically accepted if it reduces the error, and accepted with some probability α if the error is

increased. Furthermore, the probability of acceptance is directly correlated with the amount

of error difference between the new and current chain candidates. If the new candidate is

rejected, then the process is continued with the current candidate. When sampling it is

important to have a good mixture of values. So, if when using AM the new candidate is

consistently rejected, then you may not achieve good mixing. To improve mixing, delayed
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rejection (DR) is added to the algorithm. Simply put, DR constructs an alternative chain

candidate for testing instead of just keeping the original chain. The alternative candidate is

then put through the AM routine. The nuances of the mathematical approach can be found

in [26, 27, 75], but with this framework for Bayesian methods in mind, we will demonstrate

its application in several engineering problems.

2.1.3 Uncertainty Propagation: Credible & Prediction Intervals

Once the uncertainty associated with the input variables has been quantified, it is then

useful to consider how that uncertainty propagates through the model and affects the quan-

tities of interest. We will demonstrate the use of two types of uncertainty propagation. First,

we will discuss the generation and interpretation of credible intervals. This will be followed

by a description of prediction intervals.

A 100 × (1 − α)% credible interval is defined to be the interval with probability 1 − α

of containing the quantity of interest. Credible intervals represent the result of propagat-

ing the parameter uncertainty through the model. This type of interval is generated by

sampling a statistically significant amount of times from the parameter posterior densities

(θi) and evaluating the model response for each sample set. The model realizations are

put in ascending order from which one can generate intervals of credibility. The other type

of interval we consider is called a prediction interval. The difference between credible and

prediction intervals is that when predicting we also include the estimate for the observation

errors (ǫi). This highlights the different components of uncertainty. If your observations

errors are Gaussian, then you should find that n% of your data points are within the n%

prediction interval. A detailed description of both credible and prediction intervals can be

found in [75]. An example of input uncertainty is shown in Figure 2.1(a) and the resulting

prediction and credible intervals are shown in Figure 2.1(b).
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CHAPTER 3

VISCOELASTICITY OF SOFT
ELASTOMERS: INTEGER ORDER

APPROACH

3.1 Introduction

Viscoelasticity is pervasive in materials when they are subjected to different deformation

rates. This means that stress exhibited by the material has an elastic component as well

as a viscous component. In engineering applications this can be very useful as the viscous

nature of the response yields a damping effect to the motion, where the excess energy is

released as heat from the material [40]. The nature of this viscoelastic response is often

quite complicated with characteristics that vary many orders of magnitude as a function of

the deformation rates. This phenomenon has been studied extensively [6, 13, 17, 29, 31, 73];

however, accurately quantifying and predicting rate-dependent, finite deformation over a

broad range of deformation rates continues to pose a significant challenge.

3.2 Experimental Setup

The experimental research focused on a series of uniaxial load measurments of the dielec-

tric elastomer Very High Bond (VHB) 4910, made by 3M1. The specimens of VHB 4910 were

cut and measured by hand, and then tested using an MTS Insight 1 kN load frame and 5 N

load cell. The separation between the MTS clamps was initially 30 mm. The specimen was

stretched at a constant rate until the MTS clamps were separated by 180 mm, meaning the

specimen was stretched to approximately six times its initial length. Once maximum exten-

sion was achieved, the specimen was relaxed back to the initial grip separation distance at

1The experimental data collection for this project was performed by Dr. Michael Hays and Paul Miles as
part of a research experience for undergraduates (REU) hosted by Florida State University and sponsored
by the National Science Foundation (NSF).
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Figure 3.1: (a-c) Cyclic loading over 12 cycles and (d) decay of peak stress per
cycle. The decay of the peak stress is normalized by the maximum stress when
λ̇ = 0.67 Hz. Similar results are not shown for tests performed at 0.10 Hz and
0.50 Hz.

the same speed. A cyclic loading was applied to each specimen until a steady-state hysteresis

was reached as seen in Figure 3.1(a-c). In general 12 cycles was found to be sufficient to

reach a steady-state hysteresis curve, which we have highlighted by showing the asymptotic

behavior of the peak stresses per cycle in Figure 3.1(d). A range of deformation rates were

tested, spanning four orders of magnitude. As seen in Figure 3.2, the rate of loading sig-

nificantly affected the stress response. The hysteresis in the data highlights the viscoelastic

nature of the material, and makes this data useful for calibrating model parameters as will

be discussed in Section 3.4.
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3.3 Theory

We summarize the hyperelastic and viscoelastic governing equations in this section. Inter-

nal variables associated with rate-dependent dissipation are developed following the general

thermodynamic framework outlined in [14, 33, 63]. The origins of the dissipative equation

governing internal loss is based on an unknown function of entropy generation derived from

the second law of thermodynamics. This relationship is highlighted to provide guidance to

the integration of the hyperelastic energy functions and coupling with viscoelastic dissipa-

tive energy functions. Through this approach, we develop linear and nonlinear forms of the

viscoelastic stress and analyze its uncertainty using Baysian statistics in Section 3.4.

3.3.1 Finite Deformation Energy Relations

The following thermodynamic framework starts with the inclusion of thermal effects, but

will later focus on model validation under the assumption of isothermal deformation. The

total energy density function including non-conservative order parameters is given by

ψ = ψ∞(FiK ,Θ) + Υ(FiK ,Θ,Γ
ν
iK) (3.1)
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per reference volume where ψ∞ is the conserved, hyperelastic free energy function and Υ is

a dissipative energy function. The hyperelastic free energy is a function of the deformation

gradient FiK and temperature Θ while Υ includes Γν
iK , which are a set of internal variables

(α = 1, . . . , n non-measurable internal states) that contribute to dissipation during rate

dependent deformation.

Since elastomers typically undergo incompressible deformation, a penalty term is added

to the free energy, so that the total free energy density is

ψ̂ = ψ − p(J − 1), (3.2)

where p is the unknown Lagrange multiplier, which represents a hydrostatic stress and J =

det(FiK). Incompressible deformation is thus described by J = 1.

It will be shown that the work conjugate variable to the deformation gradient is the

nominal stress

siK =
∂ψ̂

∂FiK
=
∂ψ∞

∂FiK
− pJHiK +

∂Υ

∂FiK
, (3.3)

where we have used the identity
∂J

∂FiK
= JHiK and HiKFjK = δij [32].

The work conjugate variable for Γν
iK is

Qν
iK = −

∂ψ̂

∂Γν
iK

= −
∂Υ

∂Γν
iK

(3.4)

where Qν
iK denotes the viscoelastic stress [33].

The origin of the work conjugate stress siK and viscoelastic stress QiK are determined

by combining the first and second laws of thermodynamics. We briefly summarize the ther-

modynamic framework given by Peng et al. [63] and Holzapfel and Simo [33] and extend the

results by considering differences in linear versus nonlinear viscoelasticity using uncertainty

analysis.

The first law is written as a balance between the stored energy rate and applied thermo-

mechanical power,

ρ0Σ̇ = siKḞiK + ρ0r −QI,I , (3.5)
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where ρ0 is the mass per undeformed volume, Σ̇ is the stored energy rate, r is heat generation,

andQI,I =
∂QI

∂XI

is divergence of heat flow in the Lagrangian frame. Introducing the Legendre

transformation, ψ̂ = Σ − SΘ, where S is the entropy per mass and Θ is temperature, we

obtain

ρ0 ˙̂
ψ = siKḞiK + ρ0r −QI,I − ρ0ΘṠ − ρ0SΘ̇. (3.6)

This form of the first law is combined with the second law, given here in the Lagrangian

frame as

ρ0Ṡ ≥
ρ0r

Θ
−

1

ρ0

(
QI

Θ

)

,I

. (3.7)

Prior to combining (3.6) and (3.7), we take the time derivative of the total energy function

ψ̂,

˙̂
ψ =

∂ψ̂

∂FiK

ḞiK +
∂ψ̂

∂Θ
Θ̇ +

∂ψ̂

∂Γν
iK

Γ̇ν
iK , (3.8)

based upon the state variables given in (3.1). A substitution of this relation into the first

and second law equations (3.6) and (3.7) yields

(
siK −

∂ψ̂

∂FiK

)
ḞiK − ρ0

(
S +

∂ψ̂

∂Θ

)
Θ̇ −

∂ψ̂

∂Γν
iK

Γ̇ν
iK −

QIΘ,I

Θ2
≥ 0, (3.9)

which confirms the work conjugate relation in (3.3). The third term gives the viscoelastic

stress from (3.4). The additional work conjugate relation on entropy is S = −
∂ψ̂

∂Θ
. The

second law then requires that

−
∂ψ̂

∂Γν
iK

Γ̇ν
iK −

QIΘ,I

Θ2
≥ 0. (3.10)

These two terms describe the entropy production. The second relation is normally restricted

to be positive definite by allowing the heat flux to be QI = −κIJΘ,J where the thermal

conductivity tensor (κIJ) is positive definite. In cases where the thermal gradients are

negligible but viscoelastic effects are present, the first term on the right hand side must be

positive definite.

We assume that thermal gradients are negligible and the viscoelasticity is the only source

of entropy production. Following Peng et al. [63], we assume entropy production is a function
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of the time rate of change of the internal state variable and the deformation gradient,

−
∂ψ̂

∂Γν
iK

Γ̇ν
iK = Qν

iK Γ̇ν
iK = F (Γ̇ν

iK , FiK) ≥ 0, (3.11)

where both the viscoelastic stress from (3.4) and the entropy production function F (Γ̇ν
iK , FiK)

are unknown. We assume the entropy production can be approximated by a Taylor expansion

of the form

F (Γ̇ν
iK , FiK) = ηνΓ̇ν

iKΓ̇ν
jL + · · · , (3.12)

where ην must be positive definite to satisfy the second law. By assuming relative small rates

of change of the internal state, we neglect any higher order terms in (3.12) and substitute

this relation into (3.11) to obtain the equation

ηνΓ̇ν
iKΓ̇ν

iK −QiKΓ̇ν
iK = 0 → Qν

iK = ηνΓ̇ν
iK . (3.13)

This is a generalized viscoelastic constitutive law analogous to a spring-dashpot model in

one dimension [32]; however, it is important to note that this does not necessarily mean that

the viscoelastic behavior is linear. It only states that the rate of change of the internal state

is linearly proportional to the viscous stress. The dissipative function, Υ, may be nonlinear

which will give rise to different viscoelastic stresses according to (3.4). We elaborate on these

differences in the following paragraphs.

3.3.2 Nonlinear Viscoelastic Model

We must now specify how ψ̂ may depend on Γν
iK . We first consider the more general case

of a nonlinear viscoelasticity model by defining a nonlinear dissipative energy, ΥNL = Υ.

We assume that the dissipative energy function is proportional to the hyperelastic function

so that Υ ∝
∑

α β
ν
∞ψ∞. The proper form that satisfies the governing equations is [33]

ΥNL =
∑

α

[
1

2
γαΓν

iKΓν
iK − βν

∞

∂ψ∞

∂FiK
Γν

iK + βν
∞ψ∞

]
(3.14)

where βν
∞ is an unknown set of parameters for each α and γν is a set of parameters that

are proportional to the viscosity of the polymer network. It will be shown that the linear

viscoelastic model follows directly from this equation if ψ∞ is a quadratic function of the
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difference between the internal state and the deformation gradient. For the nonlinear case,

the total nominal stress can be determined from (3.3). Solution of the stress also requires

solving the entropy production equation since Γν
iK must be known. From (3.13), we must

solve

ηνΓ̇ν
iK +

∂ΥNL

∂Γν
iK

= 0 (3.15)

where we have used the work conjugate relation for the viscoelastic stress (3.4).

3.3.3 Linear Viscoelastic Model

If linear viscoelasticity is assumed (ΥL = Υ), the quadratic dissipative function

ΥL =
∑

α

[
1

2
γν (FiK − Γν

iK) (FiK − Γν
iK)

]
(3.16)

is implemented. This version of the viscoelastic dissipation function can be directly related

to the nonlinear viscoelastic model if ψ∞ =
∑

α

γν

βν
∞

FiKFiK . This illustrates that finite defor-

mation, linear viscoelasticity requires implementing a dissipation function that is analogous

to the neo-Hookean hyperelastic energy function. It will be shown that if the stretch is

significant such that the neo-Hookean model breaks down, the viscoelastic behavior is less

accurately modeled using the neo-Hookean viscous proportionality.

Implementation of the linear viscoelastic model for comparison to the nonlinear model

requires modifying (3.15) by substitution of ΥL instead of ΥNL to solve for the internal state

using

ηνΓ̇ν
iK + γνΓν

iK = γνFiK . (3.17)

It is often preferable to re-write this equation in terms of the viscoelastic stress given by

(3.4). A substitution of this stress into (3.15) and taking the time derivative of the entire

equation leads to

Q̇ν
iK +

1

τ ν
Qν

iK = γνḞiK (3.18)

where τ ν =
ην

γν
. This linear viscoelastic stress equation will be coupled with the calculation

of the hyperelastic stress in (3.3) which results in the total stress

siK =
∂ψ∞

∂FiK
− pJHiK +

∑

α

Qν
iK (3.19)
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since in the linear viscoelastic model we have Qν
iK =

∂Υ

∂FiK
= −

∂Υ

∂Γν
iK

.

In summary, the nonlinear viscoelastic model requires solving (3.3) and (3.15) where

Υ → ΥNL. In the linear viscoelastic model, the total stress requires solving (3.19) together

with (3.18). Solution of these equations requires specifying a hyperelastic energy function.

In the following subsection, we introduce the Ogden and nonaffine hyperelasticity functions

(ψ∞) to complete the set of relations required to quantify rate-dependent stresses.

3.3.4 Hyperelastic Energy Function

Two hyperelastic energy functions are introduced for integration into the viscoelastic

model and its coupling with the dissipative energy functions given by (3.14) and (3.16).

First, the Ogden hyperelastic model is considered. It is written in terms of the principal

stretches λi for the principal directions i = 1 to 3. This hyperelastic energy is

ψO
∞ =

3∑

d=1

µd

αd
(λαd

1 + λαd

2 + λαd

3 − 3) (3.20)

where µd are shear moduli with the effective shear modulus, µ =
∑3

d=1 µd, and αd are unitless

constants [32]. The model is physically constrained so that
∑3

d=1 µdαd ≥ 0.

In comparison, the nonaffine model combines the effect of a crosslinked network with

entanglement effects described by the free energy [15]

ψN
∞ =

1

6
GcI1 −Gcλ

2
max ln(3λ2

max − I1) +Ge

∑

j

(λj +
1

λj
) (3.21)

where Gc is the crosslink network modulus, Ge is the plateau modulus, λmax is the maxi-

mum stretch of the effective affine tube, and I1 = λiλi is the first stretch invariant where

summation on i is implied.

A comparison of the Ogden and nonaffine models revealed that predictions for hyperelas-

tic stress were similar for both approaches. As the nonaffine model contains fewer parameters

and is less phenomenological, the uncertainty analysis will focus on coupling the nonaffine

hyperelastic model with the linear and nonlinear viscoelastic models. Further discussion on

the reasoning behind this decision can be found in [50].
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3.4 Uncertainty Analysis

The uncertainty analysis of the integer order viscoelastic models was guided by the fol-

lowing objectives:

1) Quantify the relative accuracy of the linear and nonlinear viscoelastic models in con-

junction with the nonaffine hyperelastic model by comparing error measurements with

respect to experimental data. Use Bayesian statistical analysis to quantify uncertainty

associated with parameters and discuss the extent to which parameters can be uniquely

identified. Determine degree to which each model can be simplified. Fixing hyperelas-

tic parameters at values determined at the slowest rate is motivated based on model

restrictions discussed in Section 3.3.

2) Identify viscoelastic parameter distributions associated with each experimental stretch

rate.

3) Test predictive capability of each viscoelastic model. Models calibrated with one set

of data must always be tested to see how well they predict other sets or types of data.

Each set of parameters calibrated at a particular experimental rate will be used to

predict the behavior at all the other rates.

We will address these objectives with regard to the linear viscoelastic model in Sections 3.4.1-

3.4.4. Similar discussion for the nonlinear model is provided in Sections 3.4.5-3.4.7.

3.4.1 Model Calibration: Linear Viscoelastic and Hyperelastic
Parameters

We first focus our analysis on considering the linear viscoelastic model. The initial

analysis requires identification of the hyperelastic model parameters, meaning we wish to

quantify the uncertainty associated with the following set of parameters,

θ = [Gc, λmax, Ge, γ, η], (3.22)

where Gc, λmax, and Ge can be found in (3.21), γ is found in (3.16), and η is found in (3.13).

Using the MCMC sampling approach outlined in Chapter 2, we can calibrate the model pa-

rameters in (3.22) with respect to the slowest experimental stretch rate (λ̇ = 6.7×10−5 Hz).
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Figure 3.3: Parameter chains for calibration at slowest stretch rate with integer
order, linear viscoelastic, and nonaffine hyperelastic models.

In theory the hyperelastic nature of the material should be independent of the rate of defor-

mation. Therefore, we choose to identify the hyperelastic distributions at the slowest rate as

the viscoelastic response should be minimal, which is in agreement with the small amount of

hysteresis observed in Figure 3.2. The hope is to simplify the model by choosing a reasonable

nominal value for the hyperelastic parameters, but we must first analyze the chain from the

MCMC analysis.

There are several tools we can use to analyze the chain. First, we observe the sampling

history for each parameter chain in Figure 3.3. After approximately 4× 105 evaluations the

chain is burned-in in the sense that it has converged to the posterior density. Qualitatively,

we can make this observation based on the fact that each chain has the appearance of white

noise with no significant jumps or periods of stagnation. Details regarding the criteria for

statistical acceptance and convergence tests when using DRAM can be found in [21,26,27].

The burned-in parameter chains are used to construct marginal posterior densities, shown

in Figure 3.4. This is accomplished using a kernel density estimation (KDE) algorithm. It
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Figure 3.4: Marginal posterior densities for calibration at slowest stretch rate with
integer order, linear viscoelastic, and nonaffine hyperelastic models.

is important to point out that the posterior densities need not be Gaussian distributions;

however, for this model all parameter distributions appear to be approximately normal. This

is an important observation, especially with regard to the hyperelastic model parameters. In

theory the hyperelastic behavior of the material should be independent of rate; therefore, to

simplify model analysis at higher rates we can simply use the hyperelastic parameters found

at the slowest rate. As the parameter distributions appear to be normally distributed, it is

reasonable to take the mean value for each hyperelastic parameter and use it for analysis at

higher rates.

Another component of analyzing the chain is quantifying the correlation between pa-

rameters. We quantify this correlation with the pairwise plots in Figure 3.5. Several nearly

single-valued linear correlations can be observed between parameters. Specifically, the nearly

single-valued correlation we see between the viscoelastic damping coefficient, η, and the vis-

coelastic modulus, γ, indicates that the two parameters are not identifiable in the sense that

they cannot be uniquely determined by the data since a single value for one can be used to
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Figure 3.5: Pairwise correlation between each sampled parameter for calibration at
the slowest stretch rate using the integer order, linear viscoelastic, and nonaffine
hyperelastic models. A nearly single-valued linear correlation is observed between
several parameters.

define the other. A similar correlation can be observed between the crosslinking modulus,

Gc, and the two viscoelastic parameters. The strength of the correlation can be observed by

the amount of spread observed in the pairwise plot.

We are also interested in observing how the uncertainty propagates through the model
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to affect the quantity of interest, in this case the nominal stress. Before doing that, however,

we wish to decouple the hyperelastic and viscoelastic response. In theory, the hyperelastic

parameters should be independent of the deformation rate. As such, it is reasonable to

assume a nominal value for the hyperelastic parameters. In this case we choose the mean

values of the densities seen in Figure 3.4 for Gc, Ge, and λmax. We then focus our analysis

on identification of the viscoelastic parameters.

3.4.2 Model Calibration: Linear Viscoelastic Parameters

In this next step we will follow a very similar approach, except we have now chosen

nominal values for the hyperelastic parameters. So, for implementing the MCMC algorithm,

we are interested in just the viscoelastic parameters,

θ = [γ, η]. (3.23)

The linear viscoelastic model was calibrated at each stretch rate separately, and a different

set of parameter distributions was found in each case. A summary of the parameter statistics

found at each rate is given in Table 3.1. For all calibration cases the parameter distributions

were found to be approximately Gaussian.

We have demonstrated how we analyze uncertainty associated with input parameters, but

it is also of interest to see how that uncertainty affects the output. A statistically significant

Table 3.1: Integer Order Linear Viscoelastic: Model parameter means (θ̄) and
standard deviations (σθ). Nominal value of hyperelastic parameters: Gc = 7.55 kPa,
λmax = 4.83, and Ge = 17.7 kPa.

Stretch η γ

Rate (1/s) η̄ ση γ̄ σγ

6.7 × 10−5 2.38×106 1.08×104 9.12 1.39×10−2

0.0472 7.36×103 102.2 17.3 5.67×10−2

0.10 3.05×103 51.9 17.2 7.75×10−2

0.335 1.84×103 34.3 32.6 1.50×10−1

0.50 1.23×103 25.3 33.6 1.75×10−1

0.67 7.37×102 12.4 33.4 1.71×10−1
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Figure 3.6: Linear viscoelastic model response when predicting behavior at the
same rate used to calibrate. Parameter uncertainty propagated through model to
generate 95% prediction (PI) and credible (CI) intervals. (b) Highlights the scale
of prediction and credible intervals.

number of samples are taken from the posterior distributions and the resulting uncertainty

is propagated through the model. This information is used to generate 95% credible and

prediction intervals, as shown in Figure 3.6. Figure 3.6 demonstrates the model response

when predicting the material behavior at the same rate used for calibration.

3.4.3 Model Prediction Procedure

In Sections 3.4.1 and 3.4.2 several specific calibration studies were highlighted. Additional

tests were performed by calibrating the model at each stretch rate separately. In each case

a different set of parameter distributions were identified. The uncertainty associated with

these distributions, as well as the observation error, was propagated through the model.
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This allowed for the calculation of credible and prediction intervals, giving an estimate on

the amount of uncertainty there is in the output. The error between the statistical model

and the data was measured using

emcmc =
1

N

∑
(σmodel − σdata)2 (3.24)

where N is the number of data points, σmodel is the model stress, and σdata is the stress

measured experimentally. Each set of parameters was tested by predicting the behavior at

all stretch rates. A summary of the error based on the calibration and predictions is given

in Tables 3.2 and 3.4. Also, plots of the predicted model response across the range of rates

tested are given for each model.

To assess the reliability of our model calibration, it is important to test the resulting

parameters on non-trained boundary conditions. Parameter distributions are identified using

one data set, i.e., one particular stretch rate. We then sample from the resulting parameter

distributions to generate our estimated model response. This predicted response is compared

with data sets collected at other stretch rates, which provides an indication as to how well

the model predicts the material behavior. This procedure is followed in order to test all the

models under consideration. We first consider how well the linear viscoelastic model predicts

the material behavior.

3.4.4 Model Prediction: Linear Viscoelasticity

When performing model calibration it is extremely important to test the model using

distinct data sets. That is to say, if a model is calibrated with a specific type of experiment,

then in general it is expected that the model will perform well at predicting the behavior of

that experiment. In the present study, if the model is calibrated at a specific stretch rate,

then it is expected that the model response will agree with that stretch rate data. The true

test of the effectiveness of a model is determined by how well it predicts behavior of data not

used for calibration. To test the linear viscoelastic model we will take the set of parameters

calibrated at a given rate, and then use those parameter values to predict the behavior at all

the other rates. A representative set of results are shown in Figure 3.7, where the parameters
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Figure 3.7: Prediction of material behavior at nontrained boundary conditions
using the integer order linear viscoelastic model. Model was calibrated using λ̇ =
6.7 × 10−5 Hz. Error measurements are given in Table 3.2. Results not shown for
λ̇ = 0.10 and 0.50 Hz. Note that 95% prediction (PI) and credible (CI) intervals
are not visible at this scale.

calibrated at λ̇ = 6.7 × 10−5 Hz are used to predict the stress response at all experimental

rates. As expected, the model agrees well at the rate used for calibration; however, the model

fails to predict the viscoelastic behavior at higher rates. This response is observed regardless

of the parameter set tested as seen by the error measurements presented in Table 3.2. It is

important to observe that poor model prediction does not imply large uncertainty. Recall

that credible intervals reflect propagating the parameter uncertainty through the model. The

calibration yielded relatively low amounts of uncertainty for the parameters. This could be

an indication that the model as formulated is extremely sensitive to the parameter values.
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Table 3.2: Integer Order Linear Viscoelastic: Model error in units of kPa2. Model
evaluated using parameter distributions calibrated using the data specified in the
first column.

Calibrated Predicted Rate (1/s) Total

Rate (1/s): 6.7 × 10−5 0.0472 0.10 0.335 0.50 0.67 Error

6.7 × 10−5 0.9 263 251 2484 2725 2418 8142

0.0472 450.7 11 49 945 1067 927 3450

0.10 452.6 102 18 1002 1110 951 3635

0.335 453.2 806 560 74 95 219 2207

0.50 453.5 1054 661 116 72 162 2518

0.67 453.7 1221 852 420 175 93 3215

3.4.5 Model Calibration: Nonlinear Viscoelastic and

Hyperelastic Parameters

A similar approach is taken with regard to the nonlinear viscoelastic model. We first

consider the combined parameter set

θ = [Gc, λmax, Ge, γ, η, β], (3.25)

where Gc, λmax, and Ge can be found in (3.21), and γ and β, are found in (3.14) and

η is in (3.13). Recall that in theory the hyperelastic parameters should be independent

of deformation rate, so we will once again use MCMC sampling to calibrate the model

parameters in (3.22) with respect to the data from the slowest experimental stretch rate

(λ̇ = 6.7 × 10−5 Hz).

From Figure 3.8, we see that the parameter chains are not nearly as stable as those

observed in Figure 3.3. Additionally, we observe that the posterior densities are no longer

Gaussian in nature, which is seen in Figure 3.9. This is often the case when you increase

the number of parameters being sampled. The non-Gaussian nature of the posteriors is

acceptable, but a careful assessment is required when interpreting the results.

The nonlinear model by its very definition has correlation between the hyperelastic and

viscoelastic terms. The correlation is clearly seen in Figure 3.10, where nearly single-valued

linear and nonlinear relationships are evident between several parameter pairs. This lack of
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Figure 3.8: Parameter chains for calibration at slowest stretch rate with integer
order, nonlinear viscoelastic, and nonaffine hyperelastic models.

identifiability is typically addressed in one of two ways. One approach is to employ physical

analysis to reduce the non-identifiable parameters. In some cases it is impossible to eliminate

these terms, so instead we define the non-identifiable parameters using physically reasonable

nominal values. The latter approach was chosen for this analysis, where we set the nominal

value for the hyperlastic parameters by taking the mean of the posterior densities observed

in Figure 3.9. It is important to realize that the observed distributions are not all Gaussian

in nature, so further analysis should be interpreted in light of the uncertainty introduced by

taking these nominal values. With the hyperelastic parameter set, we can now proceed to

identify the viscoelastic parameters at each stretch rate.

3.4.6 Model Calibration: Nonlinear Viscoelastic Parameters

At this point we can perform MCMC calibration for the parameter set

θ = [γ, η, β], (3.26)
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Figure 3.9: Marginal posterior densities for calibration at slowest stretch rate with
integer order, nonlinear viscoelastic, and nonaffine hyperelastic models.

on each stretch rate data set. A summary of the parameter statistics found at each rate is

given in Table 3.3. For all calibration cases the parameter distributions were found to be

approximately Gaussian.

Propagating the uncertainty through the model, we find reasonable model predictions

Table 3.3: Integer Order Nonlinear Viscoelastic: Model parameter means (θ̄) and
standard deviations (σθ). Nominal value of hyperelastic parameters: Gc = 4.47 kPa,
λmax = 5.47, and Ge = 2.77 kPa.

Stretch η γ β

Rate (1/s) η̄ ση γ̄ σγ β̄ σβ

6.7 × 10−5 5.9×106 1.6×105 111 0.99 2.68 6.7×10−3

0.0472 4.9×103 90.3 121 0.57 4.08 1.0×10−2

0.10 1.7×103 30.9 110 0.48 4.25 1.3×10−2

0.335 1.1×103 25.9 136 1.20 6.25 2.3×10−2

0.50 1.1×103 49.5 118 4.34 6.07 3.4×10−2

0.67 5.2×102 12.2 118 1.31 6.42 2.8×10−2
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Figure 3.10: Pairwise correlation between each sampled parameter for calibration at
the slowest stretch rate using the integer order, nonlinear viscoelastic, and nonaffine
hyperelastic models. A nearly single-valued linear correlation is observed between
several parameters.

at each rate. Figure 3.11 demonstrates the model response when predicting the material

behavior at the same rate used for calibration. This gives us confidence that the attributes

of the model can capture the physical behavior of the material; however, it still leaves the

question as to whether a single set of parameters can be used to capture the entire range of
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Figure 3.11: Nonlinear viscoelastic model response when predicting behavior at
the same rate used to calibrate. Parameter uncertainty propagated through model
to generate 95% prediction (PI) and credible (CI) intervals. Note that the 95%
credible intervals are not visible at this scale.

data tested.

3.4.7 Model Prediction: Nonlinear Viscoelasticity

Once again, we test the model to determine how well it predicts the viscoelastic behavior

against data not used for model calibration. As seen in Figure 3.12, the parameter set found

by calibrating at the fastest stretch rate does not perform well at predicting the response

at slower rates. The error measurements presented in Table 3.4 highlight the parameter

sensitivity to rate. From these measurments, we can clearly say that the model parameters

are rate dependent.
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3.5 Conclusions

When considering the linear viscoelastic model, it was observed in Figure 3.6 that the

model response performed reasonably well at slower stretch rates. This potentially highlights

that a transition occurs as you increase the rate of deformation and at a certain point

nonlinear effects characterize the physics. As seen in Figure 3.11, the nonlinear viscoelastic

model performs well at capturing the physical characteristics of the stress reponse at each

rate. However, for both the linear and nonlinear models, we observe the same limiting

characteristics that the model parameters are rate dependent.

The predictive capability of the linear model is seen in Figure 3.7, where the parameters

that describe the physics at the slowest rate clearly do not perform well predicting behavior at

higher rates. A rigorous quantitative assessment in Table 3.2 reveals the linear model’s strong

parameter sensitivity to rate. Similar observations can be made with regard to the nonlinear

model, highlighted by the predictions shown in Figure 3.12 and the error measurements given

in Table 3.4. Figure 3.12 shows how the parameters at the highest rate perform poorly at

predicting behavior at slower rates. Furthermore, Table 3.4 shows that none of the parameter

sets found at intermediate rates perform any better when it comes to model prediction.

The approach presented in this chapter shows promise for modeling the viscoelastic be-

havior of dielectric elastomers. However, the model lacks robustness with respect to the rate

of deformation. Throughout the theoretical model development, the assumption was made

Table 3.4: Integer Order Nonlinear Viscoelastic: Model error in units of kPa2 when
using mean parameter value from calibration at single stretch rate.

Calibrated Predicted Rate (1/s) Total

Rate (1/s): 6.7 × 10−5 0.0472 0.10 0.335 0.50 0.67 Error

6.7 × 10−5 2.6 210 205 2313 2526 2252 7508

0.0472 239 3.3 47.2 566 620 528 2003

0.10 222 33.9 4.2 657 643 485 2044

0.335 1336 364 472 17.9 52.6 193 2436

0.50 852 166 243 38.2 36.6 118 1455

0.67 933 215 220 195 140 27.7 1730
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Figure 3.12: Prediction of material behavior at nontrained boundary conditions
using the integer order nonlinear viscoelastic model. Model was calibrated using
λ̇ = 0.67 Hz. Error measurements are given in Table 3.4. Results not shown for
λ̇ = 0.10 and 0.50 Hz.

that the material behaved as a conventional nonlinear solid. In Chapter 4 we will introduce

the idea of modeling the elastomers as fractal media, and using fractional order calculus

operators to characterize the physical response.
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CHAPTER 4

VISCOELASTICITY OF SOFT
ELASTOMERS: FRACTIONAL ORDER

APPROACH

4.1 Introduction

In Chapter 3 we introduced two different models for predicting the viscoelastic behavior

of dielectric elastomers. The nonlinear model performed better at capturing the observed

phenomena across the range of rates tested; however, both models suffered from being limited

to rate dependent model parameters. In this chapter we will present an alternative framework

which uses fractional order calculus operations to model viscoelasticity.

Fractional calculus has been applied extensively in the field of linear viscoelasticity due to

its ability to model phenomena with long memory [44]. The original application of fractional

methods to the study of viscoelasticity had no physical basis. A physical justification for this

approach was proposed by Bagley and Torvik [4], who extended the work of both Ferry [18]

and Zimm [90], which is based on the molecular theory of Rouse. Fractional calculus has been

shown to lead to well-posed structural dynamics problems with both elastic and viscoelastic

components [4]. Furthermore, fractional order methods have shown the potential for reducing

the number of parameters required to accurately describe the dynamic properties [1].

The rest of this chapter will be divided into the following sections. In Section 4.2 the

basic definitions for fractional order calculus operators will be explained, as well as how these

definitions are implemented within the context of finite deformation discussed in Chapter 3.

A discussion of the model parameter uncertainty and corresponding model predictions will

be given in Section 4.3, and concluding remarks will be provided in Section 4.4.
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4.2 Theory

The theoretical derivation for the fractional order approach is best understood within

the context of fractal media. A complete discussion of this model development can be

found in the submitted manuscript [46]. In the current study we are considering uniform

loading, independent of position, which means our models are the same for both fractal

and non-fractal media. Furthermore, the additional convective term that appears in the

time derivative associated with fractal media disappears as a result of the uniform loading.

Fractals are sometimes defined as continuous functions with no derivative (tangents) at any

point. Subsequently, in analyzing the local properties of a fractal set, it is reasonable to use

a fractional derivative [52]. The key attribute of the constitutive models considered here is

that when converted to non-fractal media (c = 1), fractional order viscoelastic models are

applicable to the materials under consideration.

Before summarizing the key findings from the finite deformation energy formulations, we

will first provide some brief definitions of fractional derivatives.

4.2.1 Definitions of Fractional Derivatives

There are various definitions for fractional derivatives. The widely used definitions include

the Caputo, Riemann-Liouville, and the Grünwald-Letnikov fractional derivatives [65].

Definition 1: Caputo’s fractional derivative of order α is defined as

(Dα
Cf)(t) =

1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, n− 1 < α ≤ n, n ∈ N, (4.1)

where α > 0 is the order of the derivative and n is the smallest integer greater than α. For

the Caputo derivative we have

Dα
Cc = 0, (c is a constant) (4.2)

Dα
Ct

ν =

{
Γ(ν+1)

Γ(ν+1−α)
tν−α, n− 1 < α < n, ν > n− 1, ν ∈ R,

0, n− 1 < α < n, ν ≤ n− 1, ν ∈ N.
(4.3)

Definition 2: Riemann-Liouville’s fractional derivative of order α is defined as

(Dα
Rf)(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n
ds, n− 1 < α ≤ n, n ∈ N, (4.4)
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where α > 0 is the order of the derivative and n is the smallest integer greater than α. For

the Riemann-Liouville’s derivative we have

Dα
Rc = c

t−α

Γ(1 − α)
, (c is a constant) (4.5)

Dα
Rt

ν = Γ(ν+1)
Γ(ν+1−α)

tν−α, n− 1 < α < n, ν > −1, ν ∈ R. (4.6)

Definition 3: The Grünwald-Letnikov fractional derivative of order α is defined as

(Dα
Gf)(t) = limh→0

1

hα

∑

0≤m<∞

(−1)m
(

α
m

)
f(t−mh). (4.7)

Proposition 1: Let t > 0, α ∈ R, n− 1 < α < n ∈ N. Then the following relation between

the Riemann-Liouville and Caputo operators holds

(Dα
Cf)(t) = (Dα

Rf)(t) − Σn−1
k=0

tk−α

Γ(k + 1 − α)
f (k)(0). (4.8)

Proposition 2: If f(t) is (n− 1) times differentiable in [0, b] and the nth derivative of f(t)

is integrable in [0, b]. Then, for every n− 1 < α < n we have

(Dα
Gf)(t) = (Dα

Rf)(t), 0 ≤ t ≤ b. (4.9)

We have used Dα
t as a fractional derivative and we will call it the fractional time derivative.

The Riemann-Liouville derivative has certain disadvantages when trying to model real-

world phenomena [56], so the Caputo fractional derivative has been used for most analyses.

In the linear model of viscoelasticity, we use Definition 1 since the rate of strain is known

from data while Γν
iK is not known a priori. In the nonlinear model of viscoelasticity, the rate

of hyperelastic stress is not known a priori, only total stress and the deformation rate are

known. Therefore we use the Grünwald-Letnikov fractional derivative (Definition 3) that is

equivalent to the Caputo fractional derivative according to Propositions 1 and 2. This is

because the value of hyperelastic stress is zero at t = 0.

4.2.2 Finite Deformation Energy Formulation

The finite deformation energy relations presented in Chapter 3 maintain a similar form

when derived in the context of fractal media. We will not reiterate the derivation here, but a
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few key equations are defined for easier reference. It will be shown that the work conjugate

variable to the deformation gradient is the nominal stress

siK =
∂ψ̂

∂FiK

=
∂ψ∞

∂FiK

− pJHiK +
∂Υ

∂FiK

. (4.10)

as well as the work conjugate relationship between viscoelastic stress and the internal state

variables

Qν
iK = −

∂ψ̂

∂Γν
iK

= −
∂Υ

∂Γν
iK

, (4.11)

The derivation eventually leads to the key result presented here

Qν
iK = ην

(
d

dt

)

D

Γν
iK (4.12)

where ( d
dt

)D is a fractal time derivative. This is the form of the fractional viscoelastic consti-

tutive law analogous to a spring-dashpot model in one dimension [32]. We can subsequently

use this relationship in our linear and nonlinear viscoelastic model formulations.

4.2.3 Linear Viscoelastic Model for Fractal Media

In the linear case we suppose the energy function has the following form

ΥL =
∑

ν

[
1

2
γν
(
FD

iK − Γν
iK

) (
FD

iK − Γν
iK

)]
, (4.13)

and by using (4.11), we have

Qν
iK = −

∂ψ̂

∂Γν
iK

= γν
(
FD

iK − Γν
iK

)
. (4.14)

By using (4.11), (4.12), (4.13) and (4.14) we have

ην

(
d

dt

)

D

Γν
iK + γνΓν

iK = γνFD
iK , (4.15)

and if we apply ( d
dt

)D to both sides of (4.15) we have

ην

(
d

dt

)

D

((
d

dt

)

D

Γν
iK

)
+ γν

(
d

dt

)

D

Γν
iK = γν

(
d

dt

)

D

FD
iK . (4.16)

We then apply (4.12) and (4.16) to obtain
(
d

dt

)

D

Qν
iK +

1

τ ν
Qν

iK = γν

(
d

dt

)

D

FD
iK , (4.17)
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where τ ν = ην

γν .

To reduce the number of terms in the model, we suppose the rates of the internal state

variables in the fractal sense are proportional to the local fractional time derivative of defor-

mation as described in Section 4.2.5. We express this assumption as

(
d

dt

)

D

Γν
iK = µν

LD
αν

t FD
iK , (4.18)

and by using Eqs. (4.12) and (4.18) we have

Qν
iK = ην

LD
αν

t FD
iK , (4.19)

where ην
L = ηνµν

L, and Dαν

t is the fractional time derivative of deformation as described in

Section 4.2.1. This is the form of the viscoelastic constitutive law analogous to a spring-

dashpot model in the one dimension fractional model.

We can see that the Clausius-Duhem inequality from (3.11) is

(ην
L)2(Dαν

t FiK)2 = F

((
d

dt

)

D

Γν
ik, F

D
iK

)
≥ 0 (4.20)

such that the second law is always satisfied for α ≥ 0, however in the experimental results we

have chosen 0 ≤ α ≤ 1 since we have a fixed rate for the strain and the fractional derivative

for α > 1 is zero. From (4.19) we can see the fractional case has an explicit expression for

Qν
iK in terms of the deformation gradient.

This linear viscoelastic stress equation will be coupled with the calculation of the hyper-

elastic stress in (4.10), resulting in the total stress

siK =
∂ψ∞

∂FD
iK

− pJHiK +
∑

ν

Qν
iK (4.21)

since in the linear viscoelastic model we have Qν
iK =

∂Υ

∂FD
iK

= −
∂Υ

∂Γν
iK

.

4.2.4 Nonlinear Viscoelastic Model for Fractal Media

In the nonlinear case we suppose the energy function has the following form

ΥNL =
∑

ν

[
1

2
γνΓν

iKΓν
iK − βν

∞

∂ψ∞

∂FD
iK

Γν
iK + βν

∞ψ∞

]
(4.22)
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following prior analysis given in [50]. By using (3.4) we then have the viscoelastic stress

function

Qν
iK = −

∂ψ̂

∂Γν
iK

= −γνΓν
iK + βν

∞

∂ψ∞

∂FD
iK

. (4.23)

Similar to the linear fractional-order model given by (4.18), we suppose here that the

rate of internal state variables in the fractal sense is proportional to the local fractional time

derivative of the hyperelastic stress. More details describing this assumption are given in

Section 4.2.5. By this assumption we have

(
d

dt

)

D

Γν
iK = µν

NLD
αν

t s∞iK . (4.24)

We can re-express this by using (4.12) and (4.24) to give the viscoelastic stress

Qν
iK = ην

NLD
αν

t s∞iK , (4.25)

where ην
NL = ηνµν

NL. Similar to the linear case, we also find that the Clausius-Duhem

inequality is satisfied for all values 0 ≤ α ≤ 1.

The work conjugate variable for Γν
iK is

∂ΥNL

∂Γν
iK

= γνΓν
iK − βν

∞s
∞
iK , (4.26)

so that by using (4.26) we have

Γν
iK =

1

γν

(
∂ΥNL

∂Γν
iK

+ βν
∞s

∞
iK

)
. (4.27)

The work conjugate variable for FD
rS is

∂ΥNL

∂FD
rS

= βν
∞s

∞
rS − βν

∞

∂s∞iK
∂FD

rS

Γν
iK , (4.28)

By using (4.11), (4.25), (4.27) and (4.28) we have

∂ΥNL

∂FD
rS

= βν
∞s

∞
rS − βν

∞

∂s∞iK
∂FD

rS

( 1

γν
(βν

∞s
∞
iK − ην

NLD
αν

t s∞iK)
)
. (4.29)

This equation will be coupled with the calculation of the hyperelastic stress which results in

the total stress in (4.10).

39



4.2.5 Internal State Variables and Fractional Derivative of Strain

To reduce the terms in the fractional model of viscoelasticity, as discussed in Sections 4.2.3

and 4.2.4, we have approximated the internal state variables by the fractional derivative of

strain in the linear case and the fractional derivative of hyperelastic stress in the nonlinear

case. We show numerically why this approximation is implemented in the linear case. A

similar analysis can be performed for the nonlinear case.

To show that the assumption in (4.18) is reasonable, we solve (4.15) for the internal

state variable by choosing the parameters η and γ which have been reported in [50]. Since

the magnitude of the rate of stretch is constant during the experiments, we can find the

fractional derivative of strain by using Definition 1 in Section 4.2.1. In Figure 4.1, we show

agreement between the internal state variables and the fractional derivative of deformation.

This agreement shows the assumption in (4.18) is reasonable.

4.2.6 Summary of Models and Parameters

We summarize here the models and parameters that will be investigated using Bayesian

model calibration techniques. We denote calibration parameters by θ to differentiate them

from parameters whose values are assumed fixed and known. Note, the viscoelastic model

is implemented in conjunction with a nonaffine hyperelastic model which was discussed in

Chapter 3.

The linear viscoelastic nonaffine model is given by (4.19) and (3.21) and has the five

parameters

θ = [Gc, Ge, λmax, α, ηL]. (4.30)

From previous discussion of the nonaffine hyperelastic model we know that Gc is the crosslink

modulus, Ge is the entanglement modulus, and λmax designates the onset of strain hardening.

The two additional parameters from the linear viscoelastic model (4.19) are the order of the

fractional derivative (α) and a damping coefficient (ηL). It is assumed that α is material

dependent, which is why we include it in our calibration parameter set. We also consider the

case when the hyperelastic parameters Gc, Ge and λmax are identified at the slowest stretch

rate and fixed since these parameters are independent of the rate. This provides a method to
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Figure 4.1: Numerical agreement between internal state variable and fractional
derivative of deformation

illustrate the predictive capabilities of the model. The resulting linear viscoelastic nonaffine

model has the two viscoelastic parameters

θ = [α, ηL]. (4.31)

The nonlinear viscoelastic model has seven parameters

θ = [Gc, Ge, λmax, α, ηNL, β, γ] (4.32)

based on (4.29) and (3.21). The viscoelastic model obtained with fixed hyperelastic param-

eters has the four calibration parameters

θ = [α, ηNL, β, γ]. (4.33)
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4.3 Uncertainty Analysis

This section summarizes the Bayesian calibration studies done using the Markov Chain

Monte Carlo (MCMC) algorithm. For a description of the Bayesian statistical analysis used;

see [50]. For a complete description of the theory; see Chapter 8 of [75]. The analysis was

guided by the following objectives:

(i) Assess parameter uncertainty using Bayesian analysis and determine the degree to

which parameters can be uniquely identified. We consider both the hyperelastic param-

eters and fractional order viscoelastic parameter sets (4.30),(4.31), (4.32), and (4.33).

(ii) Test the predictive capabilities of the fractional order model in comparison to the inte-

ger order model from Chapter 3. This is motivated by the desire to predict constitutive

behavior over a broad range of stretch rates as outlined in Section 3.1.

(iii) Determine if fractional order parameters are rate dependent. Accurate prediction at

non-trained boundary conditions is important for application and crucial in determin-

ing the actual significance of a model using inverse methods.

Our analysis begins by employing the Bayesian methods described in Chapter 2 to con-

struct the densities for the parameter sets in each model. We begin by considering the

five-parameters given by (4.30) in the linear viscoelastic model and the seven-parameters

given by (4.32) in the nonlinear viscoelastic model. Each parameter set is identified at the

slowest stretch rate. Upon analysis of those two results, we consider the two-parameters

given by (4.31) in the linear viscoelastic model and the four-parameters given by (4.33) in

the nonlinear viscoelastic model. In these two sets, the hyperelastic parameters are held

fixed and the fractional derivative viscoelastic parameters are estimated at all the higher

rates. The physical reasoning for this procedure is discussed below.

The objective has two components: (1) construct marginal densities for the input pa-

rameters, which quantifies the inherent parameter uncertainties, and (2) construct pairwise

correlation plots to determine which parameters are uniquely identifiable in light of the data.

As the results for the integer order linear and nonlinear viscoelastic model calibrations can

be found in Chapter 3, we will focus our attention on the fractional case. Note that for the

hyperelastic parameters, the results reported for the crosslink and entanglement moduli (Gc
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and Ge) are all in kPa, and λmax is unitless. The linear viscoelastic parameter, ηL, is in kPa ·

s, and the nonlinear viscoelastic parameters, ηNL, γ, and β are in kPa · s, kPa, and unitless,

respectively. Finally, the fractional order, α is also a unitless measure.

4.3.1 Model Calibration: Linear Viscoelasticity

From the calibration of the linear viscoelastic fractional order model, we have several

means by which to assess the results and quantify the parameter uncertainty. We begin by

considering calibration to stress-stretch data for the slowest stretch rate λ̇ = 6.7 × 10−5Hz.

The parameter chains for this case are shown in Figure 4.2. This illustrates the sampling

path taking by the MCMC algorithm. At 5 × 105 evaluations we note that the chains are

burned-in, meaning they have converged to the fixed posterior densities. Qualitatively this is

observed by the appearance of each chain being white noise with no significant jumps in the

mean behavior or stagnation regions. A rigorous description of the statistical acceptance and

convergence tests used by DRAM and more generally Metropolis algorithms can be found

in [21, 26, 27].

With the burned-in parameter chains we can construct marginal posterior densities using

a kernel density estimation (KDE) algorithm. As seen in Figure 4.3 all five model parameters

have clearly defined peaks and nearly symmetric distributions. Several parameters (η, α, Ge)

appear to be slightly skewed in their distributions, but nominally all densities appear to be

Gaussian. This is not a requirement using Metropolis algorithms, as non-Gaussian marginal

posteriors can also be constructed.

We also consider correlation between parameters as seen in the pairwise plots in Fig-

ure 4.4. The relationship observed between the fractional order α and the crosslink modulus

Gc indicates a nearly single-valued correlation. This implies that the parameters are not

uniquely identifiable by the data as a single value. One parameter can be used to determine

the other. These types of relationships can be linear or nonlinear, and they highlight the

potentially nontrivial coupling between different aspects of the model. A nearly single-valued

linear correlation appears to exist between the fractional order and several of the hyperelastic
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Figure 4.2: Parameter chains for calibration at slowest stretch rate with fractional
order, linear viscoelastic model. The marginal posterior densities for each parameter
appears to be stable.

parameters. Utilizing this relationship for model reduction requires further study, but it is

useful in analyzing the current state of the model.

Bayesian methods are well suited for problems with non-identifiable parameters as stan-

dard optimization or frequentist techniques will generally fail as multiple parameters yield

the same maximum likelihood. There are several ways to deal with this lack of identifiability.

A physical analysis of the model may reveal a means by which to reformulate or reduce the

model thereby eliminating the non-identifiable parameters. Often times this cannot be ac-

complished analytically, so an alternative approach is to choose physically acceptable nominal

values for the non-identifiable parameters. We chose the latter approach for the hyperelastic

parameters, Gc, λmax, and Ge, by taking the mean value calibrated at the slowest stretch

rate. We then used those values for subsequent validation studies at other deformation rates.

The physical motivation behind using calibration values from the slowest rate is discussed

in [50], but is simply understood by recalling from (3.1) that the hyperelastic energy function
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Figure 4.3: Marginal posterior densities for calibration at slowest stretch rate with
fractional order, linear viscoelastic model.

should only depend on deformation and not its rate. In the case of the fractional order linear

viscoelastic model, taking the nominal value as the mean is a reasonable assumption as the

marginal posterior densities are approximately Gaussian as seen in Figure 4.3.

4.3.2 Model Calibration: Nonlinear Viscoelasticity

Similar analysis is performed with regard to the nonlinear viscoelastic model. We first

attempted to calibrate the model parameters using the data collected at the slowest stretch

rate. As seen in the chains in Figure 4.5, the sampling approach has difficulty identifying

a stable posterior distribution. This particular problem involves seven different model pa-

rameters, which increases the complexity of the sampling space. Furthermore, at the slowest

rate there is very little viscoelastic phenomena in comparison to higher rates. Because of

this issue of identifiability, we have chosen nominal values for the hyperelastic parameter
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values, and subsequently repeated model calibration at each rate to identify the viscoelastic

components.

This analysis is very similar to the previous, but we instead consider one of the faster

stretch rates. By calibrating at a faster rate, the amount of viscoelastic phenomena has
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All model parameters were considered for this calibration.

increased, thereby making parameter identification easier. The chains as seen in Figure 4.6

have converged to the posterior densities (Figure 4.7). The pairwise correlation plot in

Figure 4.8 indicates there may be some relationship between the fractional order, α, and the

viscoelastic coefficients, η and γ. A global sensitivity analysis may help determine whether

any actual relationship exists.

4.3.3 Model Prediction Procedure

The same procedure as outlined in Section 3.4.3 is used to asses the predictive capa-

bilities of the fractional order viscoelastic model. Several calibration studies were high-

lighted in Sections 4.3.1 and 4.3.2. A different set of parameter distributions were identi-

fied by calibrating the model at each stretch rate separately. Uncertainty was propagated

through the model to generate credible and prediction intervals, giving an estimate on the
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amount of uncertainty there is in the output. The same error metric was used as before,

emcmc = 1
N

∑
(σmodel − σdata)2, where N is the number of data points, σmodel is the model

stress, and σdata is the stress measured experimentally. A summary of the error based on

the calibration and predictions is given in Tables 4.1 and 4.2. Also, plots of the predicted

model response across the range of rates tested are given for each model.

4.3.4 Model Prediction: Linear Viscoelasticity

The fractional order, linear viscoelastic model produces reasonable model predictions

across all stretch rates as seen in Figure 4.9. A summary of the error between the model

response and the data for the fractional order approach can be found in Table 4.1.
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The first column in the table indicates the stretch rate data used to estimate the model

parameters. The behavior at the other stretch rates is then predicted by using the distribu-

tions from the estimated parameters. As expected, the error is smallest when predicting the

behavior at the stretch rate used to calibrate the parameter values (i.e., smallest error for

the values along each column). The total error sums the individual errors along each row.

As expected, a smaller error is obtained when calibrating at one of the median stretch rates.
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Figure 4.9: Prediction of material behavior at nontrained boundary conditions
using the fractional order linear viscoelastic model. The model was calibrated
using λ̇ = 6.7 × 10−5 Hz. Error measurements are given in Table 4.1. Results not
shown for λ̇ = 0.0472, 0.10 and 0.50 Hz. (b) Highlights 95% prediction (PI) and
credible (CI) intervals.
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4.3.5 Model Prediction: Nonlinear Viscoelasticity

As discussed in Section 4.3.2, identification of the viscoelastic parameters was easier when

calibrating at faster stretch rates due to the sensitivity of the viscoelastic stress. With regard

to predicting behavior at other rates, we find that the fractional order, nonlinear viscoelastic

model produces reasonable model predictions across all stretch rates as seen in Figure 4.10.

A summary of the error between the model and the data can be found in Table 4.2. The

statistics associated with the parameter sampling of the nonlinear model for the fractional

order approach can be found in Table 4.3. It is important to observe the modeling errors

in conjunction with the prediction plots seen in Figure 4.9 and Figure 4.10. While some of

the error measurements are similar, the linear model clearly does not predict some of the

nonlinear stress relations, especially in the case of finite deformation. Moreover, the total

error is reduced using the fractional order model for all stretch rates considered in comparison

with the integer order models presented in Chapter 3.

4.4 Conclusions

We have demonstrated the implementation of several viscoelastic models evaluated us-

ing fractional order derivative operations. The models were derived from thermodynamic

Table 4.1: Fractional Order Linear Viscoelastic: Model error (3.24) in units of kPa2.
Model evaluated using parameter distributions calibrated using the data specified in
the first column. Mean value of parameter distributions is reported by θ̄. Nominal
value of hyperelastic parameters: Gc = 6.79 kPa, λmax = 4.86, and Ge = 15.3 kPa.

Calibrated Predicted Rate (1/s) Total

Rate (1/s): ᾱ η̄L 6.7 × 10−5 0.0472 0.10 0.335 0.50 0.67 Error

6.7 × 10−5 0.12 35.3 2.1 106 250 172 146 95 771

0.0472 0.10 27.3 9.5 11 36 645 640 459 1800

0.10 0.11 26.1 50.4 31 17 852 842 611 2403

0.335 0.12 41.3 14.4 339 618 55 54 130 1210

0.50 0.12 40.7 5.2 275 528 59 50 104 1021

0.67 0.14 39.6 34.4 95 259 131 95 64 678
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Figure 4.10: Prediction of material behavior at nontrained boundary conditions
using the fractional order nonlinear viscoelastic model. Model was calibrated using
λ̇ = 0.67 Hz. Error measurements are given in Table 4.2.

principles within the context of fractal media [46]. These model formulations reduce to

the fractional order representation shown in this chapter when considering non-fractal me-

dia. Each model was calibrated using Bayesian statistics, enabling the quantification of

uncertainty of viscoelastic constitutive relations and error propagation. The calibration was

performed using experimental data from the dielectric elastomer VHB 4910, which demon-

strated significant rate-dependent deformation during uniaxial stress measurements.

In Chapter 3 it was shown that the nonlinear viscoelastic model yields better agreements

with experimental data; however, the parameters identified during calibration were found to

be rate-dependent. In this chapter we present the results of using fractional-order operators
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Table 4.2: Fractional Order Nonlinear Viscoelastic: Model error in units of kPa2.
Model evaluated using parameter distributions calibrated using the data specified
in the first column. Parameter statistics are given in Table 4.3.

Calibrated Predicted Rate (1/s) Total

Rate (1/s): 6.7 × 10−5 0.0472 0.10 0.335 0.50 0.67 Error

6.7 × 10−5 0.5 36.7 104 539 565 439 1685

0.0472 18.2 2.0 26.8 538 519 325 1428

0.10 39.2 20.2 3.3 766 733 454 2016

0.335 17.0 267 552 4.0 17.2 90.2 947

0.50 802 154 411 16.0 6.0 56.5 1445

0.67 88.9 56.2 199 95.6 62.0 5.8 508

Table 4.3: Fractional Order Nonlinear Viscoelastic: Model parameter means (θ̄)
and standard deviations (σθ). Nominal value of hyperelastic parameters: Gc =
11.88 kPa, λmax = 8.50, and Ge = 4.47 kPa.

Calibrated η α

Rate (1/s): η̄ ση ᾱ σα

6.7 × 10−5 5.58×10−2 4.90×10−3 2.11×10−2 8.99×10−4

0.0472 1.98 0.21 0.14 1.27×10−2

0.10 3.06 0.19 0.28 1.29×10−2

0.335 2.48 0.17 0.14 8.25×10−3

0.50 0.50 4.97×10−2 6.64×10−2 5.53×10−3

0.67 2.32 0.14 0.17 8.24×10−3

Calibrated γ β

Rate (1/s): γ̄ σγ β̄ σβ

6.7 × 10−5 7.48×10−3 1.35×10−3 3.78×10−2 3.22×10−3

0.0472 13.9 2.03 0.66 1.20×10−2

0.10 33.2 2.09 0.84 1.70×10−2

0.335 15.5 1.75 0.96 1.72×10−2

0.50 0.5 0.10 0.26 2.26×10−2

0.67 14.0 1.52 0.89 2.26×10−2

within the model. It was found that the fractional-order approach for both linear and non-

linear viscoelastic models yields parameters that provide better predictions on uncalibrated

data. The fractional order, α, represents a scaling on the deformation rate, which is believed
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to be material dependent. In the future, this analysis could be repeated by collecting ex-

perimental data from different materials to provide further insight into the fractal nature of

elastomers.
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CHAPTER 5

ELECTROMECHANICS OF SOFT
ELASTOMERS

5.1 Introduction

The novel electrostrictive properties of dielectric elastomers provide opportunities for

development of a broad range of soft actuators, self-sensing systems, and energy harvesting

devices [2]. Their constitutive properties afford giant field induced deformation greater than

100% strain [89]. These soft materials can be designed into large deformable membranes that

have distinct advantages in the development of a broad range of soft robotic actuators and

sensors. One example is the iSPRAWL legged robot which uses passive hyperelastic tubing

coupled to actuation mechanisms that produced one of the fastest open-loop controlled

hexapod running robots [37]. Dielectric membrane materials offer a route towards novel

robotic motion as well as a variety of other soft actuator based devices [43]; however, accurate,

robust, and numerically efficient constitutive model predictions are necessary to design and

reliably control these active structures.

Once these elastomers are implemented within an adaptive structure, it becomes impor-

tant to understand how to control various properties of the material. For example, it is often

desirable to apply a field through these membranes in order to decrease the pre-tension, as

is the case on the iSprawl robotic platform. Using smart materials in the robot construction

shows potential for enhancing the performance of the device on multiple terrains [37]. Typ-

ical components do not perform optimally from one surface to another, but with dynamic

tuning via variable stiffness (via electrostriction) in the robotic legs, this obstacle could be

addressed. To accomplish this task, one must understand the electrostrictive response of the

material.
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Prior research has shown how a non-affine hyperelasticity function provides reasonable

prediction of uni-axial deformation of the dielectric elastomer VHB 4910 made by 3M [50,55].

The hyperelastic behavior of this modeling framework assumes only a fraction of the polymer

chains move proportional to the macroscopic boundary displacements [15]. In the previous

analysis by [50], model comparisons to data were conducted on uniaxial stress-stretch curves

over a range of stretch rates at zero electric field. Here, transverse mechanical loading, di-

electric behavior, and electrostrictive coupling of a pre-stretched membrane is included in

the analysis to gain more insight on the electromechanical constitutive model assumptions,

its predictive capability, and the uncertainty of electromechanical model parameters. For

the purpose of reduced order modeling, we assume a homogeneous deformation throughout

the membrane, which allows for simplification of the model to an algebraic expression. With

the mindset of implementing a structural model onto a platform that requires numerically

efficient control algorithms, a simple algebraic model is ideal. However, in light of the uncer-

tainty associated with the electromechanical models, it is important to determine whether

the assumptions made to simplify the problem neglect important physical and structural

properties. This will be addressed in our discussion on future work in Section 5.5.

Considerable research has been done on identifying the dielectric constant for these types

of materials [38, 82, 88]. Interpreting the constitutive behavior in light of uncertainty is

important and has often been neglected in materials and mechanics research until recently

[34, 54]. Testing of the material on the design platform reveals a non-trivial relationship

between the material’s dielectric properties and the deforming motion of the structure.

The remainder of this chapter will be broken into the following components. Section 5.2

focuses on explaining the experimental setup and procedure, and Section 5.3 introduces the

theoretical model development for both phenomena under consideration. The uncertainty

analysis is presented in Section 5.4 and concluding remarks are provided in Section 5.5.

5.2 Experimental Setup

The structure used to take advantage of electrostriction consists of a membrane or a

set of stacked membranes with a perforated center hole for the “bone” of the leg. As the
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bone is connected to the soft electroactive elastomer this allows for efficient transmittal of

forces to the ground whether walking or running. A schematic of this design can be seen

in Figure 5.1. Several different experimental procedures can be performed on this platform.

The non-deformed configuration can be seen in Figure 5.2(a). Electrodes are placed on either

side of the membrane allowing for application of an electric field. Additionally, a transverse

load can be applied to the center ring as seen in Figure 5.2(b), which has been considered

previously in a spring loaded configuration [69]. This representation assumes a homogeneous

profile through the radius of the membrane, but this is simply an approximation. In reality,

the membrane will deform in an inhomogeneous manner, which will be discussed more later.

In light of the complexities associated with this structure, the analysis of the loading is

broken into several components.

Two different experiments were performed on the same adaptive structure1. The first

experiment measured the load in response to being transversely displaced in conjunction

with electromechanical loading from an applied field. The second experiment placed the

undeformed structure in a Sawyer-Tower circuit and measured the electric displacement

under different applied fields. Both experiments are described in detail in Sections 5.2.1 and

5.2.2, respectively.

5.2.1 Transverse Load - Displacement

The dielectric elastomer VHB 4910 was bi-axially pre-stretched to three times its original

size (λpre = 3) and adhered to a circular acrylonitrile butadiene styrene (ABS) plastic ring

with a diameter of 20.5 mm (see Figure 5.1). An inner ring with diameter 5.63 mm was

placed in the center of the ring for applying transverse loading (F in Figure 5.2b). An MTS

load frame was used to monitor changes in the load for a prescribed displacement ranging

from 0 to 6 mm. The displacement was applied along a triangular load/unload displacement

profile at a constant speed of 1.41 mm/s (dδ/dt).

During the transverse load/unload cycle, the nominal electric field was fixed at values

ranging from 0 to 63 MV/m, based on the pre-stretch thickness of 1/9 mm for VHB 4910

1The experimental data collection for this project was performed by Wei Gao and Adriane Moura.
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(a) Adaptive structure (b) Overhead view schematic

Figure 5.1: (a) Elastomer is stretched over acrylonitrile butadiene styrene (ABS)
plastic frame and electrically isolated for electrode application. (b) Top view of
experimental setup.

under a pre-stretch of 3. The nominal electric field is defined in the undeformed configuration

where the membrane thickness is 1/9 mm. All electrostatic and quasi-static electrical tests

were conducted using a Trek linear amplifier that has a maximum voltage of 10 kV and

maximum current of 40 mA. Carbon grease was used as the compliant electrode, which

was required in all electrostatic experiments to apply the electrical loads. The increase

in electrostatic field results in a reduction of the effective stiffness due to electrostrictive

coupling. A representative set of data from this experiment is shown in Figure 5.3(a).

Hysteresis is clearly present, which indicates there is some viscoelastic components to the

stress response. For the purpose of the analysis presented here, however, we will focus on

the loading part of the cycle, as shown in Figure 5.3(b), and ignore viscoelastic effects.

5.2.2 Electric Displacement - Electric Field

Measurement of the dielectric constant is also conducted using electric displacement-

electric field cycles (D-E cycles) by applying sinusoidal fields at a frequency of 1 Hz. These ex-

periments were conducted in the same configuration as the un-deformed transverse load/unload

experiments. The membranes were again stretched to λpre = 3 such that the thickness is

approximately 1/9 mm assuming incompressible deformation. The membranes were tested

in a Sawyer-Tower circuit and the voltage drop was measured across a known capacitor of

58



(a) Un-deformed configuration (b) Deformed in transverse direction

Figure 5.2: Cross section illustration of the membrane structure. The structure is
loaded along the surface of the center ring. The load is denoted by F and is applied
in the transverse direction. Inhomogeneous deformation along l is neglected in the
reduced-order model.
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Figure 5.3: (a) Measured transverse load during complete experimental cycle under
different applied fields. Additional data sets at 1 kV, 3 kV, and 5 kV are not shown
for clarity. (b) Measured transverse load during loading of specimen.

153 µF [42]. The voltage across the capacitor was monitored using a Keithley 6517A elec-

trometer to determine the charge and electric displacement as a function of the applied field.

Each specimen was cycled at least five times such that steady state hysteresis is established,

and subsequent analysis is performed on the steady state values. For a pre-stretch of 300%,

the range of maximum electric fields tested range from 9 MV/m to 54 MV/m. Note the

maximum electric field is based on the amplitude of the applied sinusoidal field, so an am-

plitutde of 6 kV with 300% pre-stretch corresponds to 54 MV/m. Several example data sets
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Figure 5.4: Sawyer-Tower circuit with VHB in series with C0 = 153 µF . VHB
specimen shown in non-deformed configuration.
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Figure 5.5: Data collected from Sawyer-Tower circuit. (Left) Electric displacement
plotted as a function of the nominal field and (Right) electric displacement as a
function of index from a single loop.

are shown in Figure 5.5. This results in a direct measure of the dielectric behavior which

will be compared to electrostrictive stresses which are typically proportional to the dielectric

constant [47, 88]. The Sawyer-Tower measurements also provide a measure of the dielectric

losses due to dielectric hysteresis.

Modeling this behavior is non-trivial, which is highlighted by observing the complex re-

lationship between the different loading components. As seen in Figure 5.6(a), the measured
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Figure 5.6: (a) Slope of D-E hysteresis cycle has changed due to application of
transverse load. (b) Negligible variations in slope are observed by adjusting the
amount of pre-stretch.

electric displacement in response to the applied field is affected by the deflection of the

robotic leg. Furthermore, the slope of these cycles reflects the material’s permittivity, which

shows the uncertainty in this property as a result of deformation from transverse loading

of the membrane. It is also observed in Figure 5.6(b) that the amount of pre-stretch has

a negligible impact on the material’s permittivity. Based on these observed experimental

responses, we will investigate the affect of transverse displacement on the dielectric permit-

tivity in subsequent analysis.

5.3 Theory

The modeling framework consists of nonlinear membrane electromechanics and a rate-

dependent dielectric model that quantifies stored and dissipative electric energy transfer.

We first summarize the hyperelastic membrane mechanics and then introduce a dynamic

equation that accommodates dielectric hysteresis.
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5.3.1 Transverse Load - Displacement

Following Rizzello et al. [69], a simplified force-displacement constitutive relation can be

determined from a force balance between the applied load and the forces generated within

the dielectric elastomer membrane. Neglecting inhomogenous deformation, the transverse

force normal to the undeformed membrane plane is given by

F = 2π sin(θ)rtσl (5.1)

where r is the radius of the inner ring, t is the true thickness of the membrane, and σl is

the radial Cauchy stress. We focus on quasi-static deformation processes which requires a

relation between the transverse displacement and the geometry of the membrane using

l =
√
l20 + δ2

sin(θ) =
δ

l

(5.2)

where the geometric parameters are illustrated in Figure 5.2. The experimentally measured

transverse displacement is δ, the radial distance between the inner and outer rings is denoted

l0, and the instantaneous longitudinal length of the membrane is l.

Two deformation processes are considered. First, the membrane is bi-axially pre-stretched.

It is then transversely loaded resulting in additional radial stretch and reduction in thick-

ness. For a given direction, the total stretch is divided into the pre-stretch and stretch during

transverse loading using the relation

λi,tot = λi,preλi (5.3)

where the subscripts are i = l, c or t for the radial, circumferential, and thickness directions,

respectively. The deformation processes are all incompressible, so the following constraints

are applied

λl,preλc,preλt,pre = 1, (Bi-Axial Pre-Stretching)

λlλcλt = 1, (Transverse Loading)

λl,totλc,totλt,tot = 1. (Total Deformation)

(5.4)
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The first process is done by stretching the membrane in the radial and circumferential direc-

tions to three times their initial lengths. As stretch is simply a measure of the current length

divided by the original length, we can make the following conclusions about the stretches

during bi-axial pre-stretching

λl,pre = λc,pre = 3 =⇒ λt,pre = 1/9. (5.5)

An additional kinematic constraint is imposed by the axis-symmetric geometry. During

transverse loading, the deformation in the circumferential direction is zero requiring λc = 1.

The incompressiblity constraint in (5.4) provides the additional relation λt = λ−1
l . The

stretch in the radial direction can be related to the transverse displacement by substituting

(5.2) into the definition for stretch

λl =
l

l0
=

√
l20 + δ2

l0
=

√
1 +

( δ
l0

)2

. (5.6)

The Cauchy stress can be determined from the stretch by introducing a hyperelastic and

dielectric energy density function. It is assumed that the membrane can be described by a

hyperelastic energy function and a linear dielectric energy density [88]. This energy density

function per reference volume is

ψ̃ = ψ̃H + ψ̃D, (5.7)

where ψ̃H is the hyperelastic energy function, and ψ̃D is the dielectric energy density. The

Cauchy stress is found from (5.7),

σij = J−1FjK
∂ψ̃

∂FiK
= J−1FjK

(
∂ψ̃H

∂FiK
+
∂ψ̃D

∂FiK

)
= σH

ij + σD
ij . (5.8)

where FiK is the deformation gradient [45] and J = detFiK is the Jacobian. Before evaluating

this, we must first define our energy density functions.

A non-affine hyperelastic energy function has shown comparable model predictions rela-

tive to a six parameter Odgen model in uni-axial model fits based on prior Bayesian statistical

analysis [50]. The non-affine model requires half as many parameters relative to the Ogden

model and is therefore implemented here. Details on the theoretical motivation for this
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model is given by Davidson and Goulbourne [15] and numerical analysis and experimental

correlation is given by Miles et al. [50]. The hyperelastic energy function is

ψ̃H =
1

6
GcI1 −Gcλ

2
max ln(3λ2

max − I1) +Ge

∑

j

(
λj +

1

λj

)
(5.9)

where Gc is the crosslinked network modulus, Ge describes the plateau modulus, λmax is

the maximum stretch of the effective affine tube, and I1 = λiλi is the first stretch invariant

where summation on i is implied. Note the deformation can be described in terms of the

principal stretches, so the hyperelastic stress in the principal directions can be found by the

relation

σH
i = λi,tot

∂ψ̃H

∂λi,tot
. (5.10)

Recall from (5.1) that we are interested in determining the stress along the radial direction,

so the hyperelastic stress in the radial direction is found to be

σH
l = J−1FjK

∂ψ̃H

∂FiK
= λl,tot

∂ψ̃H

∂λl,tot

=
1

3
Gc

(
λ2

l,tot −
1

λ2
c,preλ

2
l,tot

)(
9λ2

max − I1
3λ2

max − I1

)

+Ge

(
λl,tot (1 + λc,pre) −

1 + λc,pre

λc,preλl,tot

)
.

(5.11)

The last component that we must define is the dielectric energy density. We implement

a linear dielectric energy density function of the form

ψ̃D =
FiKFiL

2Jκ
D̃KD̃L (5.12)

where κ is the deformation independent dielectric permittivity constant, and D̃K is the

nominal electric displacement [88]. Note the dielectric permittivity is κ = κrǫ0, where κr is

the relative permittivity and ǫ0 is the permittivity of free space. The nominal electrostrictive

stress relates to the energy density function by

sD
jB =

∂ψ̃D

∂FjB
=
J−1

2κ
(−HjBFiKFiL + δijδKBFiL + FiKδijδLB) D̃KD̃L. (5.13)
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The true and nominal electric displacement are related by Di = J−1FiKD̃K . The Cauchy

electrostrictive stress is found by substituting the relationship between true and nominal

electric displacement and also by multiplying by J−1FiK , yielding

σD
ij = J−1FiBs

D
jB =

1

2κ
(−δijDaDa + 2DiDj) . (5.14)

As a final step, we desire to express the model in terms of the true electric field, which is re-

lated to the electric displacement by Di = κEi. This results in the well known electrostrictive

stress tensor [47, 88]

σD
ij = κ

(
EiEj −

1

2
EkEkδij

)
. (5.15)

For the problem in question, the only nonzero field is in the thickness direction. We can

analyze this in terms of principal directions, so we find the radial electrostrictive Cauchy

stress is

σD
l = −

κ

2
E2

t (5.16)

where Et is the true field in the thickness direction, and κ is the dielectric permittivity

constant. The nominal field (Ẽt) is related to the true field by Et = λ−1
t,totẼt. The coupling

is based on nonlinear geometric effects which lead to an electrostrictive stress that is sim-

ilar to Maxwell’s stress in a vacuum except the permittivity coefficient is replaced by the

permittivity of the dielectric elastomer [47, 88].

In summary, the Cauchy stress in the radial direction is

σl = σH
l + σD

l (5.17)

where σH
l is defined in (5.11) and σD

l is defined in (5.16). Note that this model neglects

the viscoelastic hysteresis illustrated in Figure 5.3. The additional effect of viscoelasticity is

described elsewhere [50]. The Cauchy stress calculated in (5.17) is inserted into the transverse

force relation described in (5.1). We can then compare the model with the experimentally

measured transverse load (F data).

65



5.3.2 Electric Displacement - Electric Field

The D-E loops acquired through low frequency electrometer measurements are compared

to a dielectric model to provide additional support for identification of the dielectric con-

stant and comparisons with electrostriction. The model can be derived from a Lagrangian

density that takes into account vacuum field energy, conserved electronic structure energy,

and dissipation [19, 51]. To simplify the analysis, we relate the true electric displacement

and electric field components in the thickness direction since all dielectric measurements

are applied from a zero transverse displacement boundary condition. This is because the

thickness is constant assuming incompressible deformation.

The rate-dependent dielectric constitutive model is in terms of polarization as the order

parameter and given by

P̈t + γṖt +
K

m
Pt =

Ne2

m
Et (5.18)

where Pt is the polarization in the thickness direction in the deformed configuration; see

[19,51]. This model includes photonic bandgap and frequency dependent optical absorption

effects by the inclusion of the second order time derivative on polarization in P̈t. We ne-

glect second order rate effects as all data was collected under quasi-static sinusoidal fields.

Dissipation is governed by the material parameter γ while the remaining constitutive pa-

rameters K,m,N, and e govern the conserved dynamic behavior and dielectric behavior [19].

These parameters are simplified into a time constant and static dielectric constant using the

following methodology.

The true electric displacement is related to the polarization and applied field according

to

Dt = ǫ0Et + Pt =⇒ Pt = Dt − ǫ0Et. (5.19)

Applying the assumption that second order rate effects are negligible to (5.18) yields,

γṖt +
K

m
Pt =

Ne2

m
Et , (5.20)

and substituting 5.19 into (5.20) gives

γ(Ḋt − ǫ0Ėt) +
K

m
(Dt − ǫ0Et) =

Ne2

m
Et. (5.21)
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We can rearrange the expression such that the true electric displacement is isolated on the

left hand side of the equation,

γḊt +
K

m
Dt = γǫ0Ėt +

(K
m
ǫ0 +

Ne2

m

)
Et. (5.22)

Dividing both sides by K/m and pulling ǫ0 out in the final term on the right hand side gives

us
γm

K
Ḋt +Dt =

γm

K
ǫ0Ėt +

(
1 +

Ne2

Kǫ0

)
ǫ0Et. (5.23)

Finally, we can simplify this expression by defining

τD =
γm

K
, κr = 1 +

Ne2

Kǫ0
(5.24)

where τD is a time constant and κr is the relative dielectric permittivity. Giving us the final

governing equation

τDḊt +Dt = τDǫ0Ėt + κrǫ0Et (5.25)

where κ = κrǫ0 is the dielectric permittivity as given in (5.12) and κr is the relative dielectric

permittivity. Note that due to incompressibility and the membrane geometry, the thickness

of the membrane is constant during application of the field as long as the membrane does not

deform under its own weight and does not wrinkle. The electric field in (5.18) is based on

the applied voltage divided by the pre-stretched thickness which is approximately 1/9 mm

for VHB 4910 under a pre-stretch of 3. The nominal field is subsequently different when

considering other amounts of pre-stretch. It is assumed that the thickness remains constant

after pre-stretching.

5.4 Uncertainty Analysis

5.4.1 Electromechanical Parameter Estimation

The theory outlined in Section 5.3 is used to calibrate model parameters associated with

hyperelastic and electrostrictive membrane mechanics. To implement the model, we first

considered the experimental case in which no voltage was applied to the membrane. This
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was done in order to calibrate the hyperelastic model parameters found in (5.9). Sam-

pling was performed on the hyperelastic parameters as there was no applied voltage and

subsequently no electrical contribution from which to identify the relative permittivity. To

highlight the uncertainty associated with experimental variability, we performed the calibra-

tion using multiple data sets in which no voltage was applied. The data sets were taken for

specimens tested under the same conditions, so in addition to zero voltage, each specimen

had the same pre-stretch and no deflection in the transverse direction. This was done in the

MCMC algorithm by evaluating F (i; θ) for each data set, calculating the sum-of-squares,

and then adding each of them to find an overall error measure. Each error measure from

an individual set was weighted equally so that no experiment was considered more impor-

tant than another. Using this methodology and this subset of data, our first step required

calibrating the following parameters

θ = [Gc, Ge, λmax] . (5.26)

The hyperelastic stress is a function of the deformation and these parameters are assumed

independent of the applied field. Therefore, the results found from the initial calibration

were used for subsequent analysis, i.e., the mean value of the parameter chain was inserted

into the model and assumed to be deterministic. Choosing a nominal value for what was a

random variable opens up several questions, which will be discussed later.

With fixed hyperelastic parameters, calibration was subsequently performed on the rela-

tive dielectric permittivity,

θ = [κr] (5.27)

to determine electrostrictive coupling. To calibrate this parameter, we considered a different

subset of the data. We can use the same specimens from which we calibrated the hyperelastic

parameters, but in this instance we will consider data sets in which there was an applied

field. Each data set was weighted equally such that no experiment was considered more

important than another.

Performing parameter estimation using multiple datasets with different independent vari-

ables (i.e., different electrostatic fields) is a challenge. As we have discussed above, one can
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simply include all the data and weight each case similarly; however, it is of interest to see

how much the value of these parameters differ when considering each field level individually.

Furthermore, in order to test the predictive capability of one’s model, it is beneficial to ap-

ply parameter results from one experiment and predict the results of another independent

measurement. We calibrated parameters using the same approach described above, except

we determined the value of κr from only one data set or a smaller data subset, and assessed

predictions for other data sets not used in the parameter estimation. An example of this

would be to calibrate κr using all the non-zero field cases for specimen 1, then use the result-

ing posterior density in our predictions for the same field cases but for other specimens. This

type of analysis can be performed using many different combinations, but a representative

study will be discussed below.

5.4.2 Rate-Dependent Dielectric Hysteresis

The model discussed in Section 5.3.2 and the final governing equation given by (5.25) was

used to infer model parameter distributions from the electric displacement-electric field data.

Model calibration was done using subsets of the experimental data from the Sawyer-Tower

circuit. In this case the calibration parameters are

θ = [κr, τ ]. (5.28)

Application of the MCMC algorithm was analogous to the membrane model with respect to

calculating the sum-of-squares and weighting different data sets equally. Due to the observed

change in permittivity seen in Figure 5.6(a), the analysis will also include a study of how

transverse displacement affects the dielectric hysteresis model.

5.4.3 Case Studies

Following the discussion of the different parameter estimation approaches, five different

Bayesian calibrations are considered. A discussion of the cases is provided below and a

summary is provided in Table 5.2.
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Table 5.1: Calibration cases using transverse load-displacement data.

Case Calibration Percent Applied

Study Parameters Specimens Pre-Stretch Voltages (kV)

F1 Gc, Ge, λmax [1,2,3,4] 300 0

F2 κr [1,2,3,4] 300 1-6

F3(a) κr [1,2,3,4] 300 1

F3(b) κr [1,2,3,4] 300 2

F3(c) κr [1,2,3,4] 300 3

F3(d) κr [1,2,3,4] 300 4

F3(e) κr [1,2,3,4] 300 5

F3(f) κr [1,2,3,4] 300 6� F1: Calibrate non-affine hyperelastic parameters given by (5.26) using transverse load

model. Use transverse load data from several specimens in which there is no applied

voltage → no electrostriction.� F2: Calibrate the relative permittivity given by (5.27) using transverse load model.

Use transverse load data from several specimens in which there is a nonzero applifed

voltage. Include data from multiple voltage levels in single calibration.� F3(a-f): Repeat Case F2, but perform analysis on different voltage levels separately.

This will show whether any data set may be biasing the fusion process in Case F2.� D1: Calibrate the rate-dependent dielectric parameters from (5.28) the rate-dependent

dielectric constitutive model. Use data from Sawyer-Tower experiment and include

multiple amplitude voltage levels for a single specimen.� D2(a-c): Repeat Case D1, but consider the effect of transverse displacement. Use

individual data sets from the Sawyer-Tower experiment with a maximum amplitude

voltage of 3 kV (for 300% pre-stretch, this implies maximum field values of 27 MV/m).

Data sets only differ by the amount of transverse displacement.

Unless otherwise listed, units for the non-affine moduli from (5.9) are given in kilopascals

(kPa), the dielectric time constant given in (5.25) is in seconds (s), and all other model

parameters are unitless.
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Table 5.2: Calibration cases using data from Sawyer-Tower experiment.

Case Calibration Percent Applied Transverse

Study Parameters Specimens Pre-Stretch Voltages (kV) Displacement (mm)

D1 κr, τD [1] 300 2-5 0

D2(a) κr, τD [10] 300 3 0

D2(b) κr, τD [10] 300 3 2

D2(c) κr, τD [10] 300 3 4

D2(d) κr, τD [10] 300 3 6

5.4.4 Case F1: Hyperelastic Parameter Estimation

Initial considerations of the model calibration include chain convergence and parameter

correlation. In Figure 5.7, we observe the parameter sampling that results in the posteriors

seen in Figure 5.8. Based on the relatively static mean value and consistent variance of

each chain, it can be reasonably assumed that convergence of the posterior density has been

reached. Based on the trend observed in the chain, fewer iterations could have been per-

formed in constructing the marginal densities; however, 5× 105 realizations were performed

due to the low computational cost.

In Figure 5.8 we observe the marginal posterior densities associated with each non-affine

parameter which provides insight into the uncertainty associated with each parameter. Lower

uncertainty is observed for the crosslink modulus Gc and maximum stretch λmax in compar-

ison to the entanglement modulus. This highlights improved constitutive relations may be

needed to more accurately predict entanglement effects on macroscopic hyperelasticity. Note

that the numerical method used to build the distribution plots allows the possible values of

Ge to go into the negative regime, which is not possible given the model constraints. Analysis

of the parameter chain shows only sampling of positive values for the plateau modulus, so

the discrepancy seen in the center plot in Figure 5.8 is caused by the numerical approach

used in building the densities.

An additional item to consider for the non-affine parameters is whether any relationship

can be distinguished between the hyperelastic parameters. The relationships between each

parameter are observed in Figure 5.9 where the parameters have been plotted against one
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Figure 5.7: Parameter chain obtained with 5 × 105 realizations of the non-affine
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Figure 5.8: Marginal posterior parameter densities for non-affine hyperelastic model
at Ei = 0kV . Note the units for Gc and Ge are in kPa, and λmax is unitless.

another. These plots serve to quantify the parameter correlation. If two parameters appear

to form a straight line when plotted against each other, this would imply a nearly-single

value linear correlation. Such relationships indicate a lack of identifiability because a single

value for one can be used to define the other. It is also possible to have nearly-single,

nonlinear correlations. As seen in Figure 5.9, there is no clear relationship between any of

the hyperelastic parameters.

It is also of interest to compare non-affine hyperelastic parameters calibrated for trans-

verse membrane loading to uni-axial stress-stretch calibration [50, 55]. In Chapter 3, the

non-affine hyperelastic parameters for uni-axial loading have been found to be on the same
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order of magnitude as those found in this study; however, there are notable differences. The

results from previous uni-axial analysis and the current study are summarized in Table 5.3.

A comparison of the posterior densities (see Figure 3.4 in Chapter 3) highlights that even

the shape of the distributions is altered.

Whereas a direct comparison of these two sets of experiments is challenging, in light of the

addition of viscoelastic modeling for the uni-axial study, a few key relations are useful. The

nominal crosslink modulus has increased by a factor of 7.4 between the transverse membrane

and uni-axial loading cases, while the plateau modulus has decreased by a factor of 2.5. As

the elastomer is deformed during transverse membrane loading, the effects of entanglement

may be significantly reduced since all deformation occurs from a pre-stretched state unlike

in prior uni-axial measurements. However, as polymers are aligned in different directions, it

could also potentially increase the number of intersections between polymer chains, thereby

increasing the effective modulus associated with crosslink behavior. Additionally, prior uni-
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Table 5.3: Comparison of mean non-affine hyperelastic parameters from uni-axial
model calibration [50] and current transverse membrane loading conditions. The
units for Gc and Ge are in kPa, and λmax is unitless.

θ Uni-Axial Transverse

Gc 5.52 40.6
Ge 4.64 1.83
λmax 4.99 4.20

axial model calibration was conducted by identifying viscoelastic properties. Since transverse

load data was only taken over one stretch rate, rate effects were ignored. Since modeling

was performed and compared to the loading portion of the transverse load/unload cycle, the

additional effect of viscoelasticity may bias the parameter estimation.

Further complicating the uncertainty is the non-constant rate of deformation in the ra-

dial direction during transverse mechanical loading. Based on the geometry shown in Fig-

ure 5.2(b), and the assumption of homogeneous deformation along the membrane radius, we

find the radial velocity to be
dl

dt
=

δ2

(l20 + δ2)

dδ

dt
(5.29)

where the transverse displacement speed, dδ/dt, is a constant, 1.41 mm/s. As this is a

function of the transverse displacement, we consider the max and mean radial velocity and

normalize it by the initial radial length, l0, to give us a stretch rate to compare with the

uni-axial load cases.
dλl

dt
=
dl

dt

1

l0
. (5.30)

From (5.30) we found the max and mean stretch rate to be 13.2×10−3 Hz and 4.73×10−3 Hz,

respectively. The data from the uni-axial load case was collected at a stretch rate on the

order of 6.5 × 10−5 Hz. The higher, non-homogeneous stretch rate may have an effect on

the calibrated parameters. The goal of the present work is to characterize the hyperelastic,

electrostrictive, and dielectric response of the material. Quantifying the rate-dependent

behavior is left for future work.

74



5.4.5 Cases F2: Electrostrictive Parameter Estimation

The relative permittivity is first identified using the transverse load model based upon

electrostrictive coupling. The model was calibrated using experimental data sets for spec-

imens 1-4 in which there was an applied field. We must define nominal values for the

hyperelastic parameters, and in this instance it is reasonable to take the mean values from

Case F1. A plot of the marginal posterior of κr is shown in Figure 5.10. Several results are

shown in Figure 5.11 that indicate reasonable model agreement across all test cases. In these

plots we have developed credible and prediction intervals to quantify the model uncertainty.

Credible intervals are found by propagating a statistically significant number of param-

eter values from the posterior densities through the model to provide predictive response

distributions. Furthermore, by also propagating observation errors εi ∼ N(0, σ2) through

the model, one can construct prediction intervals. The variance is inferred through the

Bayesian model calibration techniques. Because the prediction intervals include uncertainty

from both the parameters and observations, they quantify the probability of observing future

numerical predictions or experimental observations, i.e., they quantify the model’s predictive

capability. For a more detailed discussion on the construction and interpretation of Bayesian

intervals see Section 9.4 of [75].

While these results give the impression of being very well defined, it is important to

remember that additional parameters in the model also are uncertain and have underlying

distributions of their own. So, it is best to interpret these results in light of the limiting case

of having taken a nominal value for the hyperelastic non-affine parameters.

5.4.6 Case F3(a-f): Electrostrictive Parameter Estimation -
Field Analysis

As described in Case F2, the mean value of the relative permittivity was found to be

κr = 7.65, which produced agreeable results with all data sets. However, when performing

model calibration it is important to test the model with non-trained boundary conditions.

To do this, we consider estimating the relative permittivity again, except based on a single

applied voltage level. This results in different values of the permittivity for each field as given
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Figure 5.10: Marginal posterior parameter density for the relative permittivity.
Calibration performed using transverse load model and data for all voltages applied
to membrane.

in Table 5.4. Using this approach, the mean permittivity and its standard deviation inferred

from the Bayesian calibration both decrease as the field increases. While the reduction in

standard deviation at higher voltage suggests more certainty in its parameter value, it is

also shown that calibration at higher fields produces better predictions on uncalibrated data

sets. This is found by taking the resulting value of κr and applying it to the other voltage

cases to observe how well it predicts behavior for cases not trained by the data.

The predictive attributes of the model are shown in Table 5.4. The first and second

columns indicates the calibration case study with corresponding applied voltage, respec-

tively. The third and fourth columns reflect the statistics found for κr based on the cali-

bration. The remaining columns illustrate the model prediction error for a set of test cases.

The last column highlights the total error over all the data tested. The total error is less

when κr is estimated at higher voltage amplitudes. This is expected since the sensitivity of

electrostriction increases with the mean field magnitude.

Given these results, Case F3 is re-assessed with respect to model prediction. In Case F3

all data sets were weighted equally; however, the sensitivity at higher fields due to elec-

trostriction provided better training data to estimate κr. As seen in Table 5.4, the relative

permittivity at higher fields is very similar to the value reported in Case F2. Furthermore,
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Figure 5.11: 95% prediction (PI) and credible (CI) intervals for the transverse load
data along with median model estimates. Data sets found in Figure 5.3 are included
for comparison. (d) Highlights scale of prediction and credible intervals. Results
not shown for applied voltages at 2 kV, 4 kV, and 5 kV.

Table 5.4 gives an asymptotic reduction in error as it approaches the largest voltages tested

(5-6 kV).

5.4.7 Case D1: Rate-Dependent Dielectric Model

We now consider parameter analysis using the rate-dependent dielectric model given by

(5.25) in order to identify the relative permittivity which is common to both models and

77



4.3 4.45

π
(θ

|D
d
a
ta

) κ
r

0.008 0.018

τ
D

Figure 5.12: Marginal posterior parameter densities for dielectric model. The den-
sities are created using data from the D-E loops for case study D1.

the dielectric time constant. The posterior densities (Figure 5.12) and chains are assessed

to gauge parameter convergence. Using 5 × 105 samples of the model, we found the chains

to be burned-in resulting in converged posterior densities presented in Figure 5.12. By

sampling out of the posteriors from Figure 5.12 we plot the 95% credible and prediction

intervals associated with the model and how it compares to data in Figure 5.13. Given

the calibrated distribution for the relative permittivity, it is also of interest to propagate

this parameter through the transverse load model to see how it compares with data. As

seen in Figure 5.14, when using the posterior density calibrated in Case D2, the transverse

load model significantly underpredicts the effects of electrostriction. Importantly, the re-

Table 5.4: Parameter statistics are provided in columns 3 (mean - κ̄r) and 4 (stan-
dard deviation - σκr

). Columns 5-10 reflect the model error (L2 − norm) in units
of N2. Error calculated based on model prediction for each voltage level.

Case Calibrated κr - Statistics Predicted Voltages (kV) Total
Study Volt. (kV) κ̄r σκr

1 2 3 4 5 6 Error

F3(a) 1 11.12 0.82 0.12 0.15 0.30 0.55 0.87 1.28 3.27
F3(b) 2 8.76 0.21 0.12 0.12 0.14 0.20 0.31 0.44 1.33
F3(c) 3 8.13 0.10 0.12 0.12 0.12 0.14 0.18 0.23 0.91
F3(d) 4 7.77 0.05 0.12 0.13 0.13 0.12 0.13 0.13 0.76
F3(e) 5 7.57 0.03 0.12 0.13 0.13 0.13 0.12 0.11 0.75
F3(f) 6 7.57 0.02 0.12 0.13 0.13 0.13 0.12 0.11 0.75
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Figure 5.13: 95% credible and prediction intervals for the D − E loops along with
median model estimates. Data sets found in Figure 5.5 are included for comparison.
Note the data has been plotted with respect to index to more clearly represent the
95% prediction (PI) and credible (CI) intervals.

sults show a significant discrepancy between the dielectric constant measured from electric

displacement-electric field (D-E) loops versus inferring the dielectric constant based on an

electrostrictive constitutive relation from the energy function given by (5.7). Since the D-E

loop data was conducted at fixed strain conditions, it suggests that electrostriction may be

described by a deformation dependent permittivity such that the force-displacement data

may also be consistent with the model. To assess this hypothesis, we must consider inho-

mogeneous deformation along the radius of the membrane to more accurately accommodate

the underlying electromechanical coupling. This is left as future work.

5.4.8 Case D2(a-c): Rate-Dependent Dielectric Model - Effect of

Transverse Displacement

The motivation for considering Case D2 stems from the experimental observation that

the slope of the dielectric hysteresis changed with the addition of transverse displacement

as shown in Figure 5.6(a). The membrane was deformed to a fixed amount of transverse

displacement, and then the Sawyer-Tower experiment was repeated at that position. So, the

transverse displacement resulted in a decrease in thickness which affects the applied field.
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Figure 5.14: Model underpredicts effects of electrostriction at higher fields when
using parameters calibrated from electric displacement-electric field (DE) hysteresis
cycles (Case D1).

We perform calibration for data sets collected using specimen 10 in which the experiment

was varied by being performed at δ = 0, 2, and 4 mm of transverse displacement.

There are many variations of numerical experiments we can perform by analyzing differ-

ent data sets. The goal of this case study is to note how transverse displacement introduces

uncertainty into the parameters of the dielectric hysteresis model. To demonstrate this un-

certainty we will show the resulting posterior densities from a representative set of calibration

studies. As seen in Figure 5.15, the relative permittivity found for each subset of data is quite

distinct. This result agrees with the observation made of the data in Figure 5.6(a), that the

slope of the dielectric hysteresis curve changes with the addition of transverse displacement.

The mechanism which causes this change is yet to be determined.

5.5 Concluding Remarks

The stresses within the membrane are caused by three distinct aspects of the design: 1)

bi-axial pre-stretching, 2) transverse mechanical loading, and 3) application of electrostatic

fields. Loading of this nature has been considered previously but in a spring loaded con-

figuration [69], which has been used in a family of commercial devices known as universal
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Figure 5.15: Comparison of marginal posterior densities for the relative permittiv-
ity in the dielectric hysteresis model. These densities represent the distributions
identified for case studies D2(a-c). It is clearly seen that the addition of transverse
displacement significantly affects the calibrated density of κr.

muscle actuators UMA’s, marketed by Artifical Muscle, Inc. In this model, the applied forces

must be balanced with the nonlinear geometric effects of finite deformation, nonlinear con-

stitutive relations. Previous modeling has been done implementing an Ogden hyperelastic

constitutive relation along with linear viscoelasticity [32].

In the current study, we proposed the use of a nonaffine hyperelastic constitutive model

[15]. This was combined with an appropriate model to capture the electrostrictive behavior

of the material. A nonaffine hyperelastic model has yielded comparable results to a higher

order Ogden constitutive relation in previous work [50]. The nonaffine model is advantageous

because it reduces the number of model parameters and is less phenomenological. The

hyperelastic model was embedded within the overall structural model. While it is known

that the true deformation profile is inhomogeneous, it is important to determine whether a

simpler homogeneous model can still yield sufficiently accurate results for certain adaptive

structure applications. In light of the desired implementation on a robotic platform, a

numerically efficient algorithm is desired for model-based feedback control, thus making the

homogeneous model relevant.
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Uncertainty analysis has been used in assessing the homogeneous deformation model,

revealing the potential existence of deformation dependent permittivity within the material

[49]. Bayesian methods worked well for identifying the unknown model parameters, but this

study reveals the importance of testing calibrated model parameters with non-trained data.

The calibration was performed by using data from one experiment (electric displacement-

electric field (D-E) hysteresis cycles). The calibrated parameters were then used to predict

the behavior of a completely different experiment (transverse deformation with electrostatic

field), yielding results that did not agree well with data (see Figure 5.14). This discrepancy

indicates the potential dependence that permittivity has with respect to deformation.

In order to confirm these results, an assessment of an inhomogeneous deformation model

[88] must be performed to determine if the simplifying assumptions within the homoge-

neous model created the appearance of deformation dependent permittivity. Analysis in

light of uncertainty is non-trivial as the inhomogeneous model is not currently amenable to

Bayesian methods. Simple optimization studies have revealed a similar dependence between

the permittivity and transverse deformation, but further analysis is required to confirm this

behavior. It may also prove necessary to consider the viscoelastic nature of the material in

the context of determining the electrostrictive characteristics.
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CHAPTER 6

FERROELECTRIC DOMAIN STRUCTURE
EVOLUTION: THEORY

6.1 Introduction

Modeling domain structure evolution at the atomic and electronic scale remains a sig-

nificant challenge in many active materials (e.g., ferroelectric, ferromagnetic, shape memory

alloys). Density functional theory (DFT) provides an accurate means by which to quantify

many structure-property relations in solids [23, 59], but it is not necessarily conducive to

the large scale computations required to solve these problems [72]. Other methods provide

the means to simulate the length scale gap between nano- to microscale domain structure

evolution, typically by introducing a phase field polarization order parameter [10,25,47,87].

These methods are computationally feasible by using coarser grids in regions of uniform

polarization (i.e., domains). Such regions are separated by nanoscale twinned domain walls.

These domain walls make continuum approximations of the electronic behavior non-trivial

and introduce uncertainty. Polarization evolves along different thermodynamic paths due to

applied electric fields as well as stress caused by local effects on domain walls [20,34,54,75].

This results in parameter uncertainty when approximating the electronic behavior in uniform

domain regions and across domain walls.

The phase field model includes various phenomenological parameters which require the

computation of energy and stress over a range of polarization values in the three dimensional

polarization space [78]. We determine the equilibrium atomic positions for different uniaxial

and shear deformation states in order to predict the atomic displacements in ferroelectric

unit cells. For certain atomic structures it is acceptable to assume that the atoms in the

crystal structure linearly follow the overall motion of the solid. This assumption is known

as the Cauchy-Born rule; however, the complexities of the current calculations preclude the
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use of the Cauchy-Born rule for accurate predictions. Atoms are incremented about a fixed

strain state which yields a non-convex energy surface in polarization space. We use DFT

to calculate the low energy atomic states based on these different fixed atomic positions,

leading to our estimate of the non-convex free energy surface. The assumed zero strain state

for estimating the Landau energy is based on a cubic state. The results from the phase field

model and DFT calculations are useful in understanding each method’s predictive capability

as well as quantifying the uncertainty between the two methods.

The uncertainty analysis will focus on quantifying model parameter probabilities of the

phase field model in light of the DFT calculations. Both monodomain and polydomain

structures will be considered within the Bayesian uncertainty analysis of domain structure

characteristics. Ongoing research in our group has questioned the self-consistency in identi-

fying monodomain parameters including the effects of twinned domain structures.

The rest of the chapter is broken into the following sections. The DFT calculations

and methodology behind them are discussed in Section 6.2. The theory associated with

monodomains and twinned domain structures will be presented in Section 6.3. Finally, the

uncertainty analysis is discussed in Section 7.1.

6.2 Density Functional Theory Calculations

The goal of performing the density functional theory (DFT) calculations is to quantify

the continuum scale Landau energy and electrostrictive stresses associated with uniform

polarization states. The DFT calculations were performed using ABINIT1. The simulations

were performed on a 10 × 10 × 10 k-point grid for a five atom lead titanate (PbTiO3) unit

cell with a cut-off energy of 60 Hz (1633 eV). All calculations make use of the local density

approximation (LDA). We combine these energy calculations with prior one dimensional

results on lead titanate [54] in order to estimate the stored energy for a broader range of

polarization states. Previous development identified pseudopotentials which were used to

approximate electron density.

1The DFT calculations for this project were performed by Justin Collins.

84



The first part of the DFT calculation was to identify equilibrium atomic positions in

the fully relaxed equilibrium lattice configuration in the tetragonal state. The atoms were

subsequently incremented in the cubic state with lattice dimensions a × a × a = 57.4 Å
3
.

Starting from the centrosymmmetric atomic configuration, the atoms were linearly incre-

mented through the equilibrium tetragonal state, resulting in a double well potential energy

function. In order to quantify the stored energy surface caused by polarizations not aligned

with the spontaneous polarization direction, atomic displacements under internal atomic

shearing are used to estimate the full three dimensional energy surface. Crystal symmetry

in lead titanate requires incrementing the polarization by an angle ranging from 0° to 45°
for different polarization magnitudes. The atoms will move during the polarization reorien-

tation. The reorientation will start with full alignment in the x3-direction, followed by 45°
rotation towards the x2-direction. The atomic motion is estimated by conducting a series

of ab initio molecular dynamic simulations about several fixed unit cell shear deformation

states and simultaneously determining the equilibrium atomic positions and electron density.

Entropic effects are neglected by computing energy, stress and polarization in the limit of

zero Kelvin.

The molecular dynamic simulations use the minimization method based on the Broyden-

Fletcher-Goldfard-Shanno method contained within ABINIT 7.0.5 [23]. The deformation

gradient component F23 = ∂x2

∂X3

, based on conventional deformation notation [45], is incre-

mented from zero up to 0.17 while holding all other deformation gradient components fixed.

The Berry phase approach [68] is used to find the polarization once the equilibrium con-

figurations are known. The atomic and electronic structures differ from the undeformed

reference state and the shear deformed state as shown in Figure 6.4.

At each increment of the deformation gradient, the atomic displacements are determined.

We have implemented a linear fit for the titanium atom positions in the x2 − x3 plane with

respect to the different F23 values as shown in Figure 6.1(a). In Figure 6.1(b) it is observed

that the polarization changes as the titanium atom displaces in shear. All the atoms in

lead titanate have similar characteristics, which we approximate as linear with respect to

polarization for estimating the atomic evolution during polarization rotation, P3 → P2.
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Figure 6.1: (a) Atomic displacement showing the relationship between the position
of the titanium atom in the x2 and x3 directions as the deformation component F23

varies between 0 and 0.17. (b) Relationship between the atomic position (titanium
atom) and polarization in the x3 direction as the deformation gradient component
F23 varies between 0 and 0.17.

The linear approximation is extremely important for the rest of our analysis. Approx-

imate linear displacements of the atomic nuclei during shear deformation and polarization

rotation serve as a guide in determining the energy surface as a function of polarization at

zero strain. The changes in stored energy as a function of atomic displacements are computed

using DFT calculations while holding the unit cell fixed at a reference cubic state using the

same unit cell geometry as prior uniaxial results [54]. The process of combining these new

calculations with previous research is simplified by the linear approximation; however, un-

certainty is introduced between the atomic positions and resulting polarization when using

the cubic state as the reference configuration. This is clearly seen in Figure 6.1(b), where

the linear assumption only nominally agrees with the calculated displacement. Although

the thermodynamic path during shear deformation is not necessarily unique, the calculated

energy is unique for the particular unit cell shape and atomic positions used in our analysis.

As mentioned earlier, the atoms were linearly incremented from different atomic positions

starting near the centrosymmetric state through the equilibrium tetragonal state. Five

different starting P3 values with P2 = 0 were used for polarization rotation, P3 → P2,
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Figure 6.2: Polarization states at which energy and stress tensor were calculated.
Six different polarization studies were performed.

as shown in Figure 6.2. The additional polarization points along the P3-axis come from

uniaxial analysis as discussed in [54]. For the five starting points, the atoms were moved

along the directions estimated from the shear deformation (F23) states to generate positive

P2 values while decreasing P3. At each point shown in Figure 6.2 the energy and stresses are

measured. The total energy can be seen in Figure 6.3(a), and the shear stress component

of the stress tensor, σ23, is shown as a function of polarization in Figure 6.3(b). The key

results observed in these plots is that both the energy and stress change due to polarization

rotation, which stems from the displacement of the atoms. In Section 7.1 we will demonstrate

how uncertainty analysis can be used to estimate parameters associated with the phase field

continuum model.

Up to this point all of our DFT calculations have focused on monodomain structures,

i.e., structues with uniform polarization in the entire domain. We will also consider DFT

domain wall calculations for an 180° polydomain structure in lead titanate. The domains

within these structures are divided by a nanoscale wall which adds energy to the system.

For 180° domain wall structures the reported energy is E180° = 132 mJ/m2 and the domain

wall width is on the order of the lattice constant, a [48]. Note, the domain wall size is most
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Figure 6.3: Plots of (a) total energy and (b) shear stress (σ23) as a function of P2

and P3. Lines are numbered for reference in later discussion.

likely underestimated as the DFT calculations were performed for the limiting case of zero

Kelvin using a relatively small supercell. This has been pointed out through domain wall

calculations of barium titanate [86]. Before we can analyze this polydomain structure we

must first define our phase field continuum model and characterize it with respect to our

monodomain DFT calculations.

6.3 Continuum Phase Field Model

The general form of the continuum phase field model is defined by the free energy density

function

u(Pi, Pi,j,∆εij) = uM(∆εij) + uL(Pi) + uC(Pi,∆εij) + uG(Pi,j), (6.1)

where Pi is the polarization in the ith-direction, Pi,j is the polarization gradient, and ∆εij

is the strain. The energy densities include uM as the elastic energy of the system, uL as

the Landau energy, uC as the electrostrictive energy, and uG as the polarization gradient

energy. This analysis is non-trivial due to coupling between the Landau energy, electrostric-

tive energy, and energy associated with polarization gradients [8]. Note that in the case

of a monodomain, the energy terms in (6.1) can be simplified. There are no polarization
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gradients in a monodomain structure, and the strain and polarization can be determined in

closed-form from energy minimization.

The form of these energy functions in standard cartesian coordinates are as follows. The

mechanical energy is defined as

uM(∆εkl) =
c11
2

(∆ε2
11 + ∆ε2

22 + ∆ε2
33) + c12(∆ε11∆ε22 + ∆ε11∆ε33 + ∆ε22∆ε33)

+ 2c44(∆ε
2
12 + ∆ε2

13 + ∆ε2
23)

(6.2)

where c11, c12, and c44 are elastic coefficients. The strain components are defined by ∆εij =

εij−ε
S
ij where εS

ij is the spontaneous strain due to transition from the reference cubic state to

the relaxed tetragonal state. In all numerical analysis, we restrict the spontaneous strain to

be defined for a spontaneous polarization aligned in the x3 direction. This results in non-zero

εS
11 = εS

22 and εS
33 spontaneous strain components and all others zero. The Landau energy is

given here by

uL(Pi) = α1(P
2
1 + P 2

2 + P 2
3 ) + α11(P

2
1 + P 2

2 + P 2
3 )2

+ α12(P
2
1P

2
2 + P 2

2P
2
3 + P 2

1P
2
3 ) + α111(P

6
1 + P 6

2 + P 6
3 )

+ α112[P
4
1 (P 2

2 + P 2
3 ) + P 4

2 (P 2
1 + P 2

3 ) + P 4
3 (P 2

1 + P 2
2 )]

+ α123P
2
1P

2
2P

2
3

(6.3)

where the phenomenological constants are denoted by α1, α11, α12, α111, α112, and α123. Cou-

pling between the strain and polarization occurs in the electrostrictive energy function, which

is

uC(Pi,∆εkl) = − q11(∆ε11P
2
1 + ∆ε22P

2
2 + ∆ε33P

2
3 )

− q12[∆ε11(P
2
2 + P 2

3 ) + ∆ε22(P
2
1 + P 2

3 ) + ∆ε33(P
2
1 + P 2

2 )]

− 2q44(∆ε12P1P2 + ∆ε13P1P3 + ∆ε23P2P3)

(6.4)

where q11, q12, and q44 are the electrostrictive parameters. Finally, the gradient energy

function is

uG(Pi,j) =
g11

2
(P 2

1,1 + P 2
2,2 + P 2

3,3)

+ g12(P1,1P2,2 + P1,1P3,3 + P2,2P3,3)

+
g44

2
[(P1,2 + P2,1)

2 + (P1,3 + P3,1)
2 + (P2,3 + P3,2)

2]

(6.5)
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where the exchange parameters are denoted as g11, g12, and g44.

Bayesian statistical methods are ideal for this type of analysis where unknown phe-

nomenological parameters are assumed to be random variables with underlying uncertainty.

Our analysis then becomes a study of determining these parameter distributions rather than

optimization of a fixed set of parameter values. For the cases we wish to investigate, the

uncertainty is associated with the homogenization of DFT energy and stress calculations

necessary to develop the three dimensional energy landscape and electrostrictive stress ten-

sor.

Approximation via the continuum model yields a reduction of the internal degrees of

freedom for the atomic position as well as changes in the surrounding electron density in

a unit cell (see Figure 6.4). The position for each atomic nuclei in a unit cell has three

degrees of freedom. For lead titanate (PbTiO3), which contains five atoms per unit cell,

this results in 5 × 3 = 15 total degrees of freedom. As a result of the atomic motion, the

electron density changes. Due to the positive charge associated with the atomic nuclei and

the distribution of electron density, this allows for measurement of polarization, which can

be directly determined via DFT calculations using the Berry phase approach [68]. Polariza-

tion serves as the order parameter in determining changes in stress and energy as a result

of changes in the atomic configurations. The 15 degrees of freedom for lead titanate has

been approximated with a single polarization vector parameter. Research has been done

with regard to the monodomain atomic structure of lead titantate (PbTiO3). The Landau

(α1, ..., α123) and electrostrictive (qij) parameters were calibrated with regard to DFT energy,

stress, and polarization calculations. The uncertainty with these parameters was quantified

using Bayesian statistical analysis as discussed in Chapter 2. A discussion of the results for

the monodomain analysis is given in Sections 7.2.1 and 7.2.2. Examples of model predictions

with respect to DFT calculations for energy along with parameter statistics will be presented

in Section 7.1. Consideration of these parameters is not as easily obtained with regard to

polydomain analysis.

The free energy described by (6.1) is then used to derive the Euler equations for the pri-

mary and secondary order parameters. Expansion of the free energy via variational methods
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(a) (b)

Figure 6.4: Example of the electron density solutions for (a) the reference unde-
formed cubic structure and (b) shear deformed state where the unit cell has been
sheared such that the deformation gradient component F23 is non-zero.

gives rise to the static equilibrium conditions with respect to polarization and strain. The

condition for static equilibrium with regard to polarization is

∂

∂xj

(
∂u

∂Pi,j

)
−

∂u

∂Pi
= 0 (i, j = 1, 2, 3). (6.6)

The stress in the material is found by taking the derivative of the energy function with

respect to strain, and so the equilibrium constraint is

σtot
ij,j =

∂

∂xj

(
∂u

∂∆εij

)
= 0 (i, j = 1, 2, 3). (6.7)

The divergence of stress should be zero for systems at static equilibrium. These definitions

are important for understanding the application to both monodomain and polydomain ferro-

electric structions. First, let us describe how these equations are evaluated for monodomain

structures.

6.4 Monodomain Structures

The Euler equations given in (6.6) and (6.7) can be simplified when considering mon-

odomain structures. Firstly, there are no polarization gradients as by definition the polar-

ization is homogeneous in the entire domain, yielding the reduced form

∂u

∂Pi
= 0 (i, j = 1, 2, 3). (6.8)
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Also, we would expect no spatial variation in the stress, so the divergence of stress is zero.

This leaves us with the continuum stress

σtot
ij =

∂u

∂∆εij
= cijkl∆εkl − qijklPkPl, (6.9)

where cijkl are the elastic coefficients and qijkl are the electrostrictive coefficients. Recall that

∆εij = εij − εS
ij. There is a residual stress associated with the spontaneous strain, εS

ij, which

we define to be σR
ij = −cijklε

S
kl. As the polarization is constrained to move from P3 to P2, we

expect σR
11 = σR

22 and σR
12 = σR

13 = 0. Evaluating (6.9) yields the following stress components

σ11 = c11ε11 + c12(ε22 + ε33) − q11P
2
1 − q12(P

2
2 + P 2

3 ) + σR
11,

σ22 = c11ε22 + c12(ε11 + ε33) − q11P
2
2 − q12(P

2
1 + P 2

3 ) + σR
22,

σ33 = c11ε11 + c12(ε11 + ε22) − q11P
2
3 − q12(P

2
1 + P 2

2 ) + σR
33,

σ23 = 4c44ε23 − 2q44P2P3 + σR
23.

(6.10)

These theoretical models can be directly compared with the DFT calculations described

in Section 6.2. Next, we will discuss the continuum approximation for monodomains within

polydomain structures.

6.5 Polydomain Structures

6.5.1 Uniform Domain Regions

When considering polydomain crystal structures, we must first have an accurate model

for the energy associated with the uniform domain regions. This will allow us to distinguish

the energy related to domain walls from the energy of the entire structure. The monodomain

(i.e., region of uniform polarization) energy is simply a function of temperature, and as such

can be purely described by the phenomenological parameters in (6.2), (6.3), and (6.4). We

implemented the same methodology described by Cao and Cross in [8]; however, several

discrepancies were observed in their solution. Our corrected solution is presented below. All

physical quantities are uniform in space, so the Euler equations, (6.6) and (6.7), reduce to

∂u

∂Pi

= 0,

σtot
ij = 0.

(6.11)
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Note that the condition on stress assumes that no external stresses are being applied. As-

suming all the polarization is oriented in the x3-direction, then we are left with the following

system of equations to solve,





∂u
∂P3

= 2[α1 − q11∆ε33 − q12(∆ε11 + ∆ε22)]P3 + 4α11P
3
3 + 6α111P

5
3 = 0

∂u
∂∆ε11

= c11∆ε11 + c12(∆ε22 + ∆ε33) − q12P
2
3 = 0

∂u
∂∆ε22

= c11∆ε22 + c12(∆ε11 + ∆ε33) − q12P
2
3 = 0

∂u
∂∆ε33

= c11∆ε33 + c12(∆ε11 + ∆ε22) − q11P
2
3 = 0.

(6.12)

For temperatures well below the Curie temperature, the solution for polarization and strain

in monodomains are found to be

P3 = P0 =
(−α′

11 + (α
′2
11 − 3α1α111)

1/2

3α111

)1/2

(6.13)

∆ε11 = ∆ε22 = ∆ε⊥ =
P 2

0

3

[ q̂11
ĉ11

−
q̂22
ĉ22

]

∆ε33 = ∆ε‖ =
P 2

0

3

[ q̂11
ĉ11

+
2q̂22
ĉ22

] (6.14)

where ∆εij = 0 for i 6= j, and α
′

11 is

α
′

11 = α11 +
4c12q11q12 − q2

11(c11 + c12) − 2c11q
2
12

2ĉ11ĉ22
(6.15)

The following set of parameters were used for convenience in the definitions given in (6.13),

(6.14) and (6.15).

ĉ11 = c11 + 2c12, ĉ22 = c11 − c12,

q̂11 = q11 + 2q12, q̂22 = q11 − q12.
(6.16)

The monodomain energy density, u0, is found by substituting P = (0, 0,±P0) along with the

solution for ∆εij into (6.1). As the polarization and strain are only temperature dependent,

the energy density is constant throughout the entire domain.

6.5.2 180° Domain Wall

The basic principle of a 180° domain wall structure is that two regions have the same

magnitude polarization but in opposition directions, and the dividing section between the
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two regions is the domain wall. For the purpose of our discussion, we will define the problem

with the following coordinate system. In the two uniform regions, far from the domain wall,

all of the polarization will be oriented in the positive or negative x3-direction. To support

the theoretical model development, we also analyzed the problem using a fully coupled

(mechanics, Gauss’ law, Ginzburg-Landau eqs.) finite element analysis (FEA). The analysis

is performed on a block whose center is located at (0, 0, 0) with lengths L1, L2 and L3 in the

x1-, x2-, and x3-directions, respectively. As shown in Figure 6.5, results from the FEA show

the transition from negative to positive polarization in the x3-direction occurs as one moves

along the x1-coordinate. There is no change in polarization as one moves in the x2-direction.

Therefore, the only gradient terms of interest will be the gradient with respect to the x1-

direction. A summary of the mechanical boundary conditions used as part of the FEA are

given in Table 6.1.

Mathematically, we can describe the polarization as

P = (0, 0, P3(x1)), (6.17)

Figure 6.5: Polarization field in 180° domain wall structure.
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Table 6.1: Displacement boundary conditions for finite element model of 180° do-
main wall structure.

Displacement Boundary Conditions

u1(−L1/2) = 0

u2(−L2/2) = 0 u2(L2/2) = η⊥L2

u3(−L3/2) = 0 u3(L3/2) = η‖L3

where all the polarization is in the x3-direction. The boundary conditions for this problem

are
lim

x1→±∞ P = (0, 0,±P0),

lim
x1→±∞ σ

tot
ij (x1) = 0 for ij = 11, 22, 33,

σtot
ij (x1) = 0 for ij = 23, 13, 12,

(6.18)

where P0 is the magnitude of the polarization in the uniform domain regions, as discussed

in Section 6.5.1.

Assuming P = (0, 0,±P3(x1)), the static equilibrium conditions given in (6.6) and (6.7)

reduce to the second-order nonlinear differential equation

(
∂u

∂P3,1

)

1

−
∂u

∂P3
= 0 → 2α+

1 P3 + 4α11P
3
3 + 6α111P

5
3 − g44P3,11 = 0. (6.19)

Here α+
1 = α1 − q11∆ε33 − q12(∆ε11 + ∆ε22), and the momentum constraint,

σ11,1 = 0 = c11∆ε11,1 + c12(∆ε22,1 + ∆ε33,1) − 2q12P3P3,1. (6.20)

From the boundary conditions in (6.18) one will find that all other strain components are

zero. A numerical procedure is implemented to solve for P3(x1) and ∆ε11(x1) simultaneously.

Numerical Solution: 180°. We numerically solve (6.19) and (6.20) using finite dif-

ference methods by introducing a time-dependent term with a damping parameter. The

solution is iteratively updated until we reach a steady state solution. Once the system is

at equilibrium, we are back to the original differential equations given by (6.19) and (6.20).

When solving the second equation, it is beneficial to replace the strain component, ∆ε11,

with the displacement gradient (∆ε11 = u1,1). This ensures that compatibility constraints
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are automatically met, and makes comparison with FEA results simpler as the boundary

conditions are in terms of displacement for both methods. Furthermore, by considering the

solution along the x1-axis, we can assume that the displacements in the x2- and x3-directions

are zero. This leaves us with the time-dependent equations

ω
∂P3

∂t
= g44P3,11 −

[
2
(
α1 − q11∆ε33 − q12(u1,1 + ∆ε22)

)
P3 + 4α11P

3
3 + 6α111P

5
3

]
,

ω
∂u1

∂t
= c11u1,11 − 2q12P3P3,1 = 0,

(6.21)

where ω is a damping parameter. We use an implicit time integrator as part of the iterative

procedure. A central-difference method is used to approximate the first and second order

spatial derivatives. The boundaries are approximated using forward- and backward-Euler

differencing schemes. The subscript, i, refers to the spatial point and the superscript, n,

refers to the temporal step. To simplify the representation the following operators has been

defined to represent the central difference approximation

∂w

∂x
≈ δ0wi =

wi+1 − wi−1

2∆x
,

∂2w

∂x2
≈ δ2wi =

wi+1 − 2wi + wi−1

∆x2
.

(6.22)

for first and second order derivatives.

We will use the variable ui to represent P3(x) and v to represent u1(x), which yields the

discretized form

ω
un

i − un−1
i

∆t
≈ g44δ

2un
i − 2(α1 − q11∆ε33 − q12∆ε22)u

n
i

− 4α11(u
n−1
i )3 − 6α111(u

n−1
i )5

+ 2q12u
n−1
i δ0v

n−1
i

(6.23)

and

ω
vn

i − vn−1
i

∆t
≈ c11δ

2vi − 2q12u
n
i δ0u

n
i . (6.24)
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of (6.21). After rearranging (6.23) and (6.24), one finds that the numerical procedure results

in a matrix problem, Kwn = d, with the form



b1 c1 0 . . . . . . 0

a2 b2 c2
. . .

. . .
...

0 a3 b3 c3
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . aN−1 bN−1 cN−1

0 . . . . . . 0 aN bN







wn
0

wn
1
...
...

wn
N−1

wn
N




=




d0

d1
...
...

dN−1

dN




. (6.25)

To solve (6.23), the components of (6.25) are

ai = ci = −
∆t

ω

g44

∆x2
,

bi = 1 +
2∆t

ω

g44

∆x2
+

2∆t

ω
(α1 − q11∆ε33 − q12∆ε22),

di = h(x, y) = x+
∆t

ω

[
2q12xy − 4α11x

3 − 6α111x
5
]
,

x = un−1
i , y = δ0v

n−1
i ,

(6.26)

for i = 2, N − 1, and wn
i = un

i for all i. To satisfy the boundary conditions for P3 in (6.18),

we define:

b1 = 1, c1 = 0, d1 = un−1
0

aN = 0, bN = 1, dN = un−1
N .

(6.27)

Since the matrix is tridiagonal, we can easily solve it using the Thomas algorithm.

Turning our attention to (6.24), one finds that is is also a tridiagonal system, with the

terms

ai = ci = −
∆t

ω

c11
∆x2

,

bi = 1 −
2∆t

ω

c11
∆x2

,

di = h(x, y, z) = x−
2q12∆t

ω
yz,

x = vn−1
i , y = un

i , z = δ0u
n
i ,

(6.28)

for i = 2, N − 1, and wn
i = vn

i for all i. This system is updated by applying the new solution

from (6.23) to the right-hand side. The boundary conditions for displacement result from

the stress conditions in (6.18). For the u1-displacement, we enforce the Dirichlet boundary
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condition u1(−L1/2) = 0 and the Neumann boundary condition du1/dx|x=L1/2 = η⊥. This

is accomplished by defining

b1 = 1, c1 = 0, d1 = un−1
0

aN = −1, bN = 1, dN = η⊥∆x.
(6.29)

A representative solution, found using this numerical procedure, is presented in Fig-

ure 6.6. The polarization in the x3-direction is initialized using a hyperbolic tangent function

where the solution asymptotes to the required boundary conditions. Recall that the numer-

ical routine solved for the displacement in the x1-direction, and the relationship between

displacement and the strain component plotted in Figure 6.6 is ∆ε11 = u1,1. To satisfy the

boundary conditions for strain, the displacement was prescribed to have a Dirichlet bound-

ary condition on the left end such that u1(−L1/2) = 0, and a Neumann boundary condition

on the right end such that du1/dx|x=L1/2 = η⊥, where L1 is the length of the domain in the

x1-direction. The initial condition for displacement was simply a line from u1(−L1/2) = 0 to

u1(L1/2) = L1η⊥. For a given set of parameters, the number of iterations required to reach

equilbrium may change. The convergence criteria for equilibrium was when the sum of the

L2-norm measures (||~an −~an−1||2) were less than 10−10. Results are in good agreement with

solutions found using finite element analysis.

Comparison with Finite Element Analysis. From literature, it has been reported

that the energy through the 180° domain wall is EDFT
180° = 132 mJ/m2 [48]. We measure the

domain wall energy by integrating through the density,

E180° =

∫ ∞

−∞

(u− u0)dx1. (6.30)

Evaluation of (6.30) requires numerically approximating over an interval that includes the

domain wall. The energy density away from the domain wall will be zero as we have sub-

tracted the homogeneous energy solution. The remaining energy density should just be

that associated with the domain wall. By using the domain wall energy reported in lit-

erature, we can analyze the uncertainty associated with the continuum approximation for

the 180° domain wall structure. The results from the uncertainty analysis are presented in
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Figure 6.6: Numerical solution for 180° domain wall polarization in the P3-direction
and the strain component, ∆ε11. Note, for a given set of parameters it took 26 time
steps (TS) to meet convergence requirements.

Section 7.3.1. Before performing the uncertainty analysis it is important to test whether our

finite-difference approximation is accurately modeling the physics. To do this we compare

the algorithm presented above with the solution found from Finite Element Analysis (FEA).

The energy associated with the domain wall structure can be found by taking the dif-

ference between the polydomain u and the homogeneous energy solutions u0. As seen in

Figure 6.7(a), the finite-difference approach for u − u0 is qualitatively in agreement with

the finite element analysis solution for a consistent set of parameters. This comparison can

also be made with regard to the different components of the energy density, so the Landau

energy is shown in Figure 6.7(b) as a representative comparison. Furthermore, we can evalu-

ate (6.30) for each energy component, and we find that the Landau, elastic, electrostrictive,

and gradient energy for the finite-difference and finite element approach are in good agree-

ment as seen in Table 6.2. The strength of this agreement is a good indication that the

finite-difference model is a reasonable approximation for the 180° domain wall structure.
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Figure 6.7: Energy density over 180° domain wall. Results from finite-difference
(FD) approach agree well with finite element (FEA) solution using a consistent set
of parameters.

Table 6.2: This table summarizes the energy contributions as calculated via (6.30)
for each energy component for both finite element (FEA) and finite-difference (FD)
approximations of the 180° domain wall structure. All units for energy are in
mJ/m2.

Energy Method Difference

Component FEA FD FEA-FD

Elastic uM 1.39 -2.28 3.673

Landau uL -79.32 -80.10 0.775

Electrostrictive uC 146.22 148.37 -2.151

Gradient uG 64.96 65.99 -1.038

Total u 133.40 131.99 1.412

6.6 Concluding Remarks

In this chapter we have shown the basic theory associated with the continuum phase

field model. This theory has covered the calculation of energy and stress in monodomain

structures, and also introduced numerical algorithms for solving 180° domain wall structures.

The phase field model contains many unknown phenomenological parameters, which we
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can infer using the Bayesian calibration methods discussed in Chapter 2. We discuss the

application of uncertainty analysis to ferroelectric domain structures in Chapter 7.
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CHAPTER 7

FERROELECTRIC DOMAIN STRUCTURE
EVOLUTION: UNCERTAINTY ANALYSIS

7.1 Introduction

The atomic structure of lead titantate (PbTiO3) is nontrivial to analyze. It is beneficial

to break the analysis into different parts. The physical contraints of the problem allow us

to perform the uncertainty analysis in four distinct sections. First, in Sections 7.2.1 and

7.2.2 we will consider the energy and stress associated with monodomain structures, from

which we can quantify the uncertainty associated with the Landau as well as electrostrictive

parameters. The exchange parameters can only be identified in the presence of polydomain

structures which introduce polarization gradients. The uncertainty analysis associated with

the 180° domain structure is presented in Section 7.3.1.

7.2 Monodomain Structures

7.2.1 Model Calibration: Energy

In Section 6.3 we discussed the theory behind modeling domain structure evolution, and

here we will highlight the work that has been done on quantifying the uncertainty associated

with monodomain structures. The phenomenological parameters associated with the Landau

energy, seen in Equation (6.3), are calibrated using Bayesian statistical methods outlined in

Chapter 2. The physics associated with monodomain energy and stress can be decoupled

because the electrostrictive energy is zero since the strain is set to zero in the reference

cubic state. This allows us to analyze the parameter uncertainty associated with the Landau

energy and electrostrictive stresses separately. The parameter set under consideration for

the monodomain energy analysis is

θu = [α1, α11, α12, α111, α112]. (7.1)

102



    

-415

-340 α
1

    

675

875 α
11

    

-250

1250 α
12

2 4 6 8

Iterations (10
4
)

25

125
α

111

2 4 6 8

Iterations (10
4
)

-2700

800
α

112

Figure 7.1: Parameter chains for calibration of phase field model parameters with
respect to DFT energy measurements for monodomain structures.

The set, θu, is the Landau energy parameters, which are calibrated by comparison with

DFT calculations of the monodomain energy for different polarization states. Note that the

polarization was constrained to move from the P3 to the P2 direction and that there was no

polarization in the x1-direction (making α123 unidentifiable).

We performed MCMC sampling on the energy model with the parameter set, θu, and

successfully quantified the uncertainty associated with the Landau energy parameters. The

sampling history for each parameter chain is seen in Figure 7.1. The Landau parameters

clearly have the appearance of white noise and have burned-in to the posterior densities

shown in Figure 7.2. All posterior distributions appear to be Gaussian, so taking the mean

as the nominal value when considering polydomain structures is a reasonable assumption.

Finally, several nearly single-valued linear relationships can be seen in Figure 7.3. The

strongest relationships are observed between the pairs, (α1, α11), (α11, α111), and (α12, α112).

These relationships are not surprising given the definition of the Landau energy given in

(6.3). A summary of the Landau parameter statistics is reported in Table 7.1.
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Figure 7.2: Marginal posterior densities for calibration of phase field model param-
eters with respect to DFT energy measurements for monodomain structures.

In the case of the monodomain energy measurements, there is a relatively small amount

of uncertainty associated with the Landau parameters. By propagating the uncertainty seen

in Figure 7.2 through the model, we can generate 95% prediction and credible intervals

to highlight the amount of uncertainty in the output, as seen in Figure 7.4(a). It can be

somewhat challenging to distinguish the uncertainty in the energy density in the plot across

the entire polarization space. To highlight the uncertainty, Figures 7.4(b) and 7.4(c) show

Table 7.1: A summary of the continuum material parameters determined using
Bayesian statistics and the MCMC/DRAM methods.

Parameter Mean Value Standard Deviation Units

α1 −389.4 10.49 MV·m/C

α11 761.3 30.01 MV·m5/C3

α12 414.1 241.6 MV·m5/C3

α111 61.46 19.98 MV·m9/C5

α112 −740.8 499.4 MV·m9/C5
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Figure 7.3: Pairwise correlation between each sampled parameter for calibration of
phase field model parameters with respect to DFT energy measurements for mon-
odomain structures. A nearly single-valued linear correlation is observed between
several parameters.

lines 1 and 4, respectively, from the polarization data sets.
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(a) Monodomain Energy Density in P2P3-Polarization Space
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Figure 7.4: 95% prediction (PI) and credible (CI) intervals for monondomain energy
model. (a) Model comparison with all DFT calculations in 3D polarization space.
(b,c) Two-dimensional representations of lines 1 and 4 with respect to polarization.

7.2.2 Model Calibration: Stresses

The second calibration study identifies the electrostrictive parameters found in (6.4) as

well as a set of residual stresses that arise due to the presence of spontaneous strain. These
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parameters can be divided into two sets as follows,

θσ = [θσns
, θσs

],

θσns
= [q11, q12, σ

R
11, σ

R
22, σ

R
33],

θσs
= [q44, σ

R
23].

(7.2)

We can calibrate these parameters by using the model equations given in (7.3) and comparing

them with the DFT calculations for monodomain stresses. As discussed Section 6.2, the

monodomain DFT calculations were performed such that the total strain components, εij,

are zero. Furthermore, the polarization space studied is in the P2P3-plane, meaning P1 = 0.

The final reduced set of stresses on which we will perform uncertainty quantification are

σ11 = −q12(P
2
2 + P 2

3 ) + σR
11,

σ22 = −q11P
2
2 − q12P

2
3 + σR

22,

σ33 = −q11P
2
3 − q12P

2
2 + σR

33,

σ23 = −2q44P2P3 + σR
23,

(7.3)

The constraint that all the polarization is in the P2 and P3 directions allows us to take

advantage of symmetry where σR
11 = σR

22 and σR
12 = σR

13 = 0. This assumption was confirmed

through the DFT experiments, and also verified using Bayesian statistics by allowing σR
11

and σR
22 to be independent. Furthermore, the calibration study can be decoupled into two

components. We use the notation σns and σs to refer to the non-shear and shear stress

parameters, respectively.

It is important to refer back to (7.3) to highlight the decoupling between the electrostric-

tive parameters associated with normal stress (q11 and q12) and the shear electrostrictive

coefficient (q44). From (7.3) it is seen that the electrostrictive shear stress only depends on

the parameters q44 and σR
32. Therefore, these parameters may be sampled separately from

the normal stress components to determine how this influences parameter identification and

uncertainty. In the following, we compare sampling all stress parameters contained within

θσ versus the reduced set defined by θσs
.

Similar to the results presented for the monodomain energy, a set of Bayesian statistical

results are calculated for the electrostrictive stress constitutive law given by (7.3) in light of

107



the DFT stress calculations. Again 1×105 iterations are calculated to ensure the parameter

values are burned-in similar to the results shown in Figure 7.1. For brevity, we only show

statistical results in terms of the posterior densities of the electrostrictive parameters and the

residual stress. The results are in agreement with the mean and standard deviations given

in Table 7.2 which show larger uncertainty in the shear coefficient q44 when it is identified

together with all parameters in θσ. When θσs
is identified separately the standard deviation

of the shear parameters is reduced. Also note that the shear residual stress is nominally zero

as expected; however, there is uncertainty associated with its value.

The posterior densities for both θσ and θσs
are shown in Figure 7.5. All posteriors are ap-

proximately normal distributions. Importantly, we find reduced uncertainty when the shear

parameters are identified independently from the normal stress parameters. The uncertainty

of the normal stress parameters is unaffected by decoupling the parameter estimation. Given

these posterior densities, we propagate them through the normal and shear stress components

along different polarization paths to highlight propagation of error.

The model predictions of the relevant stress components along with their prediction and

credible intervals are shown in Figure 7.6 using the parameter set θσ. Similar to the case of

the Landau energy surface, reasonable prediction is observed over the range of polarization

Table 7.2: A summary of the continuum material parameters determined using
Bayesian statistics and the MCMC/DRAM methods. The parameters with an
asterisk were identified using θσ2.

Symbol Mean Value Standard Deviation Units

q11 19.2 0.258 GV·m/C

q12 3.14 0.182 GV·m/C

q44 1.39 0.538 GV·m/C

q∗44 1.40 0.019 GV·m/C

σR
11 -3.977 0.103 GPa

σR
22 -3.995 0.101 GPa

σR
33 -3.410 0.118 GPa

σR
23 −4.00 × 10−4 96.2 × 10−3 GPa

σR∗
23 −7.79 × 10−4 3.32 × 10−3 GPa
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Figure 7.5: Marginal posterior densities for calibration of phase field model param-
eters with respect to DFT stress measurements for monodomain structures. The
marginal posterior densities for the shear stress parameters are reduced if calibrated
separately, as seen by the dashed lines.

values simulated; however, the range of uncertainty in electrostrictive stress is more difficult

to see over the entire polarization space. Select two-dimensional plot examples examining

σ33 and σ23 are shown in Figures 7.7 to further illustrate the propagation of uncertainty.

Note that the error propagation in Figure 7.7(c,d) is based on the reduced uncertainty using
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parameters θσs
. It is clearly shown that less uncertainty exists for the normal stress along the

direction of polarization when P2 = 0 (similar results are found for σ11 and σ22). The shear

stress and normal stresses for cases where P2 6= 0 exhibit larger uncertainty. This is due to

the magnitude of the stress, the larger uncertainty in the shear electrostrictive parameter q44,

and the additional uncertainty of the shear residual stress. However, as mentioned earlier,

by decoupling the parameter identification there is a significant decrease in the uncertainty

contained within the shear electrostrictive and shear residual stress parameters.

7.3 Polydomain Structures

The model for the 180° domain wall structure are calibrated using Bayesian statistics.

To calibrate, we must compare the models with data or results from a high fidelity simula-

tion. We will compare the model results for the energy across the domain wall as noted by

(6.30). From literature, it has been reported that the energy across the 180° domain wall is

132 mJ/m2 [48]. This result comes from performing DFT calculations.

Recall from Chapter 2 that the adaptive Metropolis algorithm depends on the sum-of-

squares difference between the model response and data, or in this case DFT, measurement

- ss =
∑N

i=1[E
DFT (i) − E(i; θ)]2. The sum-of-squares measure is extremely sensitive when

only calculating scalar quantities such as E180° = 132 mJ/m2. To offset this, a set of simu-

lated data is generated using the mean value from literature with perturbations of ± 10%.

The simulated data sets contained 1000 points. Introducing this perturbation is useful to

stabilizing the numerical algorithm; however, it is important to remember that it will be

reflected in the inferred parameter distributions.

7.3.1 180° Domain Wall

For this domain wall structure, we are interested in inferring the uncertainty associated

with the exchange parameter g44. Our parameter of interest is then θ = [g44]. Note, that for

the present analysis we have assumed a decoupled problem with regard to the other unknown

phenomenological parameters. In Sections 7.2.1 and 7.2.2 we discussed how the Landau and

electrostrictive parameters were inferred by analysis of monodomain energy and stress.
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(a) σ11 (b) σ22

(c) σ33 (d) σ23

Figure 7.6: Examples of the mean model estimates along with 95% prediction (PI)
and credible (CI) intervals in relation to DFT stresses for (a) σ11 , (b) σ22, (c) σ33

and (d) σ23. Note that each plot consists of a set of stresses along different lines in
the P2P3-plane. The lines have been numbered 1-6 for reference in later discussion.

From the calibration of the domain wall model, we can assess certain aspects of the

resulting parameter chain. As seen in Figure 7.8(a), the sampling of g44 has the appearance

of white noise, so we can say that it has “burned-in”. Furthermore, we see that the chain
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Figure 7.7: Two-dimensional representations of the uncertainty propagation shown
in Figure 7.6. Note, (c,d) presents a contrast to Figure 7.6 in that the 95% predic-
tion and credible intervals were generated from propagating the uncertainty from
the reduced parameter set θσs

.

has converged to the posterior density, which is shown in Figure 7.8(b).

At this point, we have quantified the uncertainty associated with the exchange parameter,

g44. We are now interested to see how that uncertainty propagates through the model and

affects the calculation of certain quantities of interest. Furthermore, we are interested in

observing how the uncertainty associated with the Landau and electrostrictive parameters

affects model predictions for polydomain structures. By sampling from the posterior densities
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and evaluating the model at each set of samples, one can generate credible intervals. The

model evaluations are sorted such that one can extract (1− α)× 100% intervals. Figure 7.9

shows an array of credible intervals based on propagating uncertainty through calculations

for the energy density. Most of the uncertainty is within the domain wall region as expected.

Note, in addition to estimates of the domain wall energy reported in literature, there are

also estimates as to the size of the domain wall. Meyer and Vanderbilt reported the domain

wall width of 180° domain structures to be on the same order of magnitude as the lattice

constant, a = 3.9 Å [48]. As seen in Figure 7.9, the domain wall energy is isolated inside the

estimated domain wall width (DFT: L180°).
7.4 Concluding Remarks

Parameters contained within a ferroelectric monodomain model have been analyzed by

comparing continuum scale model approximations to DFT energy and stress calculations.

Bayesian statistics have provided information about parameter uncertainty when quantify-

ing the energy landscape over the three dimensional polarization space. Previous analysis

that considered changes in energy along the spontaneous polarization direction [54] showed

relatively low uncertainty in predictions of energy and stress. Here parameter uncertainty

is found to be larger during polarization rotation as highlighted by the shear related con-

stitutive parameter posterior densities; see Figures 7.2 and 7.5. The parameter uncertainty

is propagated through the continuum model to quantify prediction intervals of energy and

stress along different thermodynamic paths as illustrated in Figures 7.4, 7.6, and 7.7. The

larger uncertainty during polarization rotation is believed to manifest at the atomic scale

when approximating the motion of multiple atoms within a unit cell in terms of a single

polarization vector along directions not aligned with the spontaneous polarization.

We also performed uncertainty analysis to infer unknown exchange parameters associated

with polydomain structures. We considered the exchange parameter g44, and inferred its

posterior density via calibration with DFT calculations of the energy across the domain wall

structure. The amount of uncertainty in the exchange parameter is relatively small; however,

the approximation implemented here did not account for the potential correlation between
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the Landau, electrostrictive, and exchange parameters. Future research will determine the

extent to which parameters can be uniquely identified. Moreover, we will couple results for

180° domains with 90° domains to identify the additional exchange parameters contained

within the energy function.

A quantitative comparison of the Landau, electrostrictive, elastic, and gradient energy

terms found using finite difference and finite element methods enable us to identify potential

areas of model improvement without introducing unnecessary intricacies which can plague

Bayesian statistical analyses. Such analyses also couple closely with sensitivity analysis and

should be done in parallel to identify the most relevant parameters governing the material

physics.
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CHAPTER 8

CONCLUDING REMARKS & FUTURE
WORK

In the previous chapters we have demonstrated the advantages of performing uncertainty

analysis during model development, specifically in applications related to smart materials and

adaptive structures. Quantifying the uncertainty in model input parameters and propagating

that uncertainty through the model provides more realistic limits on the predictive limits

of the model. Analysis of this information provides us with an opportunity to refine our

model and identify the greatest sources of uncertainty. Also, by considering the correlation

between model parameters, it highlighted the importance of performing sensitivity analysis

which can lead to model reduction.

In Chapter 3 we analyzed the uncertainty associated with modeling viscoelasticity in

a linear and nonlinear framework. The rate dependent nature of the model parameters

motivated the search for an alternative approach, which led to the use of fractional order

calculus in Chapter 4. The new viscoelastic model was found to predict the material behavior

well across the entire range of deformation rates tested. Our analysis of each model was

enhanced by considering the uncertainty at each step, and propagating the uncertainty put

realistic bounds on the model output.

We applied the same techniques on considering the electromechanical behavior of the

dielectric elastomer VHB 4910 in Chapter 5. By using two different sources of evidence we

demonstrated many of the challenges associated with data fusion as well as the importance

of testing calibration results against data not used to train the model. The homogeneous

model assumption reasonably approximates the electromechanical behavior during transverse

loading; however, the permittivity found is not consistent with the results obtained from the

rate dependent dielectric model. The next step is to test inhomogeneous model to determine

whether a rate dependent permittivity term is required.
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The same techniques were applied in consideration of ferroelectric domain wall struc-

tures in Chapters 6 and 7. The continuum approximation of the electronic and atomic

structures results in many different levels of uncertainty. In considering the ferroelectric

lead titanate, we quantified the uncertainty associated with monodomain Landau and elec-

trostrictive parameters. The analysis of polydomain structures is required to identify the

exchange parameters. The theoretical model development as well as uncertainty analysis was

discussed for 180° domain wall structures. Ongoing efforts are focused on applying the same

principles in the analysis of 90° domain wall structures, and also considering the potential

correlation between monodomain and polydomain model parameters.
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APPENDIX A

SUPPLEMENTAL MATERIAL

A.1 Dempster-Shafer Theory of Evidence

Many engineering problems are not conducive to sampling based methods. Although

computational speed has dramatically increased, many problems still take hundreds or thou-

sands of computational hours to solve with a single set of parameter values, making sampling

inconceivable. Similarly, many experiments are only capable of retrieving a limited number

of data points, making a probabilistic approach unrealistic. In such circumstances it is often

ideal to approach uncertainty quantification from the stand point of set theory. For prob-

lems in which limited data is available, or perhaps simulation time is unreasonable, we can

consider the uncertainty quantification technique known as Evidence Theory [16, 71]. The

basic principles of evidence theory make it potentially useful when considering engineering

problems. Previous studies have considered turbulent flow models [67], flight path trajec-

tories [66], and also medical analysis of dosing levels [11]. Evidence theory, or more fully,

Dempster-Shafer Theory of Evidence, is a more conservative method to uncertainty quantifi-

cation that allows for lack of knowledge to exist in the analysis. The best way to understand

this is in the form of an example. If a survey is performed asking a sample of the population

to indicate whether they like a certain product, the responses are limited to“Yes”, “No”, and

“I do not know.” Probabilistic techniques will simply ignore responses of “I do not know”,

thereby ignoring the uncertainty associated with that response group. Those responses could

be “Yes” or “No”, so if a large number of people respond in this manner, the uncertainty in

the solution is extremely large.

Evidence theory, or Dempster-Shafer theory, quantifies uncertainty in two ways, giving us

a measure of Belief (Bel) and Plausibility (P l). This is in essence giving us a lower and upper

bound on the likelihood of an event being the true event. Dempster argued that in the case

of a nonlinear function, y(x), if the probability of x is known, the only probability that can
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be concluded with respect to the function value, y, is the upper and lower probabilities [16].

Shafer established a mathematical description of evidence theory that deviates from the

focus on probability and instead relies on evidence from finite sets [71].

In consideration of this theory, the basic concept can be outlined as follows:

1) Determine the quantity of interest.

2) Define what constitutes conflicting evidence.

3) Construct the universal set.

4) Construct the belief structure.

We desire to quantify the evidence in support of a given proposition. Suppose our quantity

of interest is the elastic modulus for some new material. We may have different experimental

measurements that support different values for the elastic modulus. The universal set would

comprise all possible values for the quantity of interest. Conflict would occur if different

sources supported different values for the elastic modulus (see Section A.1.1 for more details).

The belief structure would quantify the measure of belief that the modulus is within a

particular range of values or subsets. This requires us to define an m-function. The m-

function will assign a value in the range [0,1] to a subset, and the value of the m-function

can be interpreted as the mass or belief mass. This assignment will satisfy

m(∅) = 0,
∑

bi⊆U

m(bi) = 1. (A.1)

where U is the universal set and bi are different subsets of evidence within the universal

set. The null set, ∅, must have no supporting evidence. We now have some form of belief

structure but in order to have any useful meaning, it is required to have a convex shape.

Convexity is reached when the mass of evidence contains a global maximum with adjacent

sets all decreasing in magnitude away from the maximum (see Figure A.1). With our

m-function clearly defined, we can then quantify the two key measures in evidence theory:

Belief (Bel) and Plausibility (P l). These quantities are given by

Bel(A) =
∑

bi⊆A

m(bi); P l(A) =
∑

bi∩A 6=∅

m(bi), (A.2)
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(a) Non-convex Belief Structure (b) Convex Belief Structure

Figure A.1: The shape of the belief structure must be refined for meaningful inter-
prepation. The partitioning of the evidence must by done in such a manner that a
convex belief structure (b) is generated. A structure without convex shape as seen
in (a) does not allow for any meaningful statistical inference of the proposition.

where A is a proposed true value of the quantity of interest, bi ⊆ A indicates we are summing

all the evidence contained in A, and bi∩A 6= ∅ indicates we are summing all the evidence that

does not directly contradict the proposition A. The equation for plausibility can alternatively

be expressed as P l(A) = 1 − Bel(Ā), where Ā is the complement of A. Understanding the

distinction between belief and plausibility can be better understood by considering the Venn

diagrams in Figure A.2.

The belief of U is equal to the sum of the mass of evidence of all the subsets of U, i.e.,

Bel(U) =
∑

i

m(bi) = 1 (A.3)

where m(bi) is the mass of evidence in support of the ith subset of U. By definition, this

quantity will sum to 1. However, it is important to realize that m(U) is not equal to 1. In

fact, the quantity m(U) is the mass of uncertainty. That is to say any evidence that exists in

the universal set that does not support or contradict a proposed true value. The relationship

between belief, plausibility, and the universal set is presented in Figure A.3.
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(a) Bel(A) 6= P l(A) (b) Bel(A) = P l(A)

Figure A.2: Venn diagram relationships describing two cases of belief and plausi-
bility functions. In (a), the belief and plausibility functions lead to differences since
not all bi that intersect A are subsets of A. In (b), belief and plausibility functions
are equal because all sets bi intersect A and are subsets of A. These distinctions
give additional statistical information that can be used in decision making which is
not contained within probability theory.

Figure A.3: Relationship between belief, plausibility, and uncertainty for a given
proposition, A. The mass of uncertainty is evidence that could either support or
conflict with A [28].

A.1.1 Rules of Combination

To assess the validity of a proposition we must often account for evidence from differ-

ent sources. This is clearly seen in the judicial system, where each witness’s testimony is

weighed in light of their credibility and circumstances. In the same way, when analyzing

an engineering problem we must account for data from multiple sources and find a way to

combine them. Evidence theory allows us to quantify the uncertainty, and by combining

different sets of evidence we can provide a broader picture of the degree of confidence we can

have for a specific outcome.
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Many rules of combination exist, and there are different schools of thought as to which are

appropriate. Depending on the evidence being combined, a particular rule of combination

may produce non-intuitive results. So, as mentioned before, this particular tool must also

be assessed on a case-by-case basis as to whether or not it is applicable. Let us begin by

assessing Dempster’s Rule of Combination (DRC).

m1,2(A) =
∑

B∩C=A 6=∅

m1(B)m2(C)

1 −K
(A.4)

where K is a measure of the amount of conflict defined by

K =
∑

B∩C=∅

m1(B)m2(C). (A.5)

We interpret m1,2(A) as the mass of evidence supporting proposition A based on the evidence

provided by two independent sources, m1 and m2. Now, these two sources of evidence may

or may not have coinciding sets. So, based on this definition we only add the mass when the

intersection of B and C contains the proposition A. Furthermore, the metric is normalized by

the conflict. As seen in (A.5) conflict occurs when the intersection of B and C is the empty

set, i.e., they are nonoverlapping sets. This method for combining evidence will tend to

amplify areas of agreement and dampen sets when the sources of evidence provide opposing

degrees of belief. This can lead to nonintuitive results [85], so it is only presented here as an

example of how combination rules can be interpreted and applied. Alternative approaches

may be more appropriate depending on the quantity of interest.
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