Experimental Determination of Operational Pedal Cycle Frame Loads

Paul Miles & Mark Archibald

Objectives

- To build a database of verified load cases to be applied to vehicle design
- Finite Element Analysis models to be verified by actual load data
- Future: Failure modes or criteria may also be developed or verified

Long Wheel Base - Recumbent Bike

Experimental Methods

- Data was collected under 6 different loading conditions
 - Static
 - Steady riding
 - Smooth
 - Normal
 - Rough
 - Hard acceleration
 - Level
 - Uphill

Basic Frame with Strain Gauge Locations

Dimensions in millimeters

Data Analysis – Matlab Programming

- Stress calculations
 - Principal stresses were found using strain data from rosette gauges along with the modulus of elasticity and Poisson's ratio
 - Axial stresses were found using Hooke's Law

Matlab Programming

- 1 main code
 - Loads raw .txt/.asc or saved .mat files
 - Saves data to .mat files
 - Creates matrix with mean, standard deviation, and case number
- Functions
 - Outputs state of stress at the different gauge locations based on strain data
 - stress_caseplot_QB_LWB.m
 - Menu to switch between different gauge locations
 - Graphs mean stress with standard deviation respective to each case

Raw Strain Data

Top of Chainstay – Principal Stress PRINCIPAL STRESSES: ROSSETTE GAUGE 1 SIG 11 \diamond SIG 12 \diamond \bigcirc FEA 2 -2 MEAN STRESS (KSI) -6 -8 -10 -12 -14 ssv SL ssv SR SP ssv SR MP ssv SR RP pv HA LG pv HA UH

Distribution of Weight while Pedaling

Top of Down Tube in Front – Axial Stress

Comparing Experimental and FEA

FEA Comparison

SL (ksi)	FEA 1G (ksi)	Absolute Difference (ksi)		HA_LG (ksi)	FEA HA- LP 3G (ksi)	Absolute Difference (ksi)
-0.6	0.0	0.6		1.5	0.2	1.3
-8.0	-7.4	0.6		-9.2	-8.3	0.9
-0.2	0.4	0.6		0.9	0.1	0.8
-6.4	-6.2	0.2		-4.7	-7.8	3.1
-4.5	-2.0	2.5		-4.7	-4.1	0.6
	SL (ksi) -0.6 -8.0 -0.2 -6.4 -4.5	SL FEA 1G (ksi) -0.6 0.0 -8.0 -7.4 -0.2 0.4 -6.4 -6.2 -4.5 -2.0	SL FEA 1G (ksi) Absolute Difference (ksi) -0.6 0.0 0.6 -8.0 -7.4 0.6 -0.2 0.4 0.6 -6.4 -6.2 0.2 -4.5 -2.0 2.5	SL FEA 1G (ksi) Absolute Difference (ksi) -0.6 0.0 0.6 -8.0 -7.4 0.6 -0.2 0.4 0.6 -6.4 -6.2 0.2 -4.5 -2.0 2.5	SL (ksi) FEA 1G (ksi) Absolute Difference (ksi) HA_LG (ksi) -0.6 0.0 0.6 1.5 -8.0 -7.4 0.6 -9.2 -0.2 0.4 0.6 0.9 -6.4 -6.2 0.2 -4.7 -4.5 -2.0 2.5 -4.7	SL (ksi) FEA 1G (ksi) Absolute Difference (ksi) HA_LG (ksi) FEA HA- LP 3G (ksi) -0.6 0.0 0.6 1.5 0.2 -8.0 -7.4 0.6 -9.2 -8.3 -0.2 0.4 0.6 0.9 0.1 -6.4 -6.2 0.2 -4.7 -7.8 -4.5 -2.0 2.5 -4.7 -4.1

Conclusions

 State of stress within frame found successfully using experimental methods

 Use of FEA model in static and hard acceleration loading conditions verified