Uncertainty Analysis of Continuum Phase Field Modeling in 180° Domain Wall Structures

Presenter: Paul Miles

Authors: Paul Miles^a, William Oates^a, Lider Leon^b, Ralph Smith^b

^aDepartment of Mechanical Engineering Florida Center for Advanced Aero-Propulsion (FCAAP) Florida A & M and Florida State University, Tallahassee, FL 32310

> ^bDepartment of Mathematics North Carolina State University, Raleigh, NC 27695

03/26/2017

Outline

- Density Functional Theory (DFT)
- Monodomain
- Polydomain
- Conclusions & Future Work

Figure: Domain structures in Barium Titanate¹.

Figure: (Left) Unit cell width is approximately 4 angstroms. <u>http://www.nature.com/nmat/journal/v12/n7/fig_tab/nmat3669_F1.html</u> (Right) Polydomain structures - 180° and 90° domain wall boundaries.

1. Dong, Liang, Donald S. Stone, and Roderic S. Lakes. "Softening of bulk modulus and negative Poisson ratio in barium titanate ceramic near the Curie point." *Philosophical Magazine Letters* 90.1 (2010): 23-33.

03/26/2017

Density Functional Theory (DFT)

- Lead Titanate
- Deform atomic positions different polarization states
- Uncertainty:
 - Nuclei positions and electron density (5 atoms, each with 3 degrees of freedom)
 - Approximate as a polarization vector

Figure: Example of the electron density solutions for (Left) the reference undeformed cubic structure and (Right) shear deformed state where the unit cell has been sheared such that the deformation gradient component F_{23} is non-zero.

DFT: Energy & Stress

• Shear:

- Atoms moved based on estimates from shear deformation
- Positive P_2 generated, P_3 reduced
- Calculate energy and stress at each polarization state

• Energy:
$$u(P_i, P_{i,j}, \varepsilon_{ij})$$

• Stress:
$$\sigma_{ij} = \frac{\partial u}{\partial \varepsilon_{ij}}$$

Figure: Polarization rotation – starting from five different locations of nonzero P_3 and $P_2 = 0$. Atoms moved along directions estimated from shear deformation states to generate positive P_2 values while reducing P_3 . DFT computations performed by Justin Collins.

Theory

Free energy density

$$u(P_i, P_{i,j}, \varepsilon_{ij}) = u_M(\varepsilon_{ij}) + u_L(P_i) + u_C(P_i, \varepsilon_{ij}) + u_G(P_{i,j})$$

Components

- u_M elastic energy
- u_L Landau energy
- u_C electrostrictive energy
- *u_G* polarization gradient energy

- P_i polarization in i^{th} direction
- $P_{i,j}$ polarization gradient
- ε_{ij} strain

^{1.} Cao, Wenwu, and L. E. Cross. "Theory of Tetragonal Twin Structures in Ferroelectric Perovskites with a First-Order Phase Transition." Physical Review B 44.1 (1991)

Monodomain Analysis

• Landau energy density

$$\begin{split} u_L(P_i) &= \alpha_1 (P_1^2 + P_2^2 + P_3^2) + \alpha_{11} (P_1^2 + P_2^2 + P_3^2)^2 \\ &+ \alpha_{12} (P_1^2 P_2^2 + P_2^2 P_3^2 + P_1^2 P_3^2) + \alpha_{111} (P_1^6 + P_2^6 + P_3^6) \\ &+ \alpha_{112} [P_1^4 (P_2^2 + P_3^2) + P_2^4 (P_1^2 + P_3^2) + P_3^4 (P_1^2 + P_2^2)] \\ &+ \alpha_{123} P_1^2 P_2^2 P_3^2 \end{split}$$

• Unknown phenomenological parameters: $\alpha_1, \alpha_{11}, \alpha_{12}, \alpha_{111}, \alpha_{112}, \alpha_{123}$

Uncertainty Quantification: Bayesian Statistics

- Statistical Model: $M^{DFT}(i) = M(i; \theta) + \varepsilon_i, \quad i = 1, ..., N$
- Bayes' Relation

$$\pi(\theta|M^{DFT}) = \frac{p(M|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} p(M|\theta)\pi_0(\theta)d\theta}$$

- Posterior density: $\pi(\theta|M^{DFT})$
- Prior density: $\pi_0(\theta)$
- Likelihood: $p(M|\theta) = e^{-\sum_{i=1}^{n} [M^{DFT}(i) M(i;\theta)]^2/(2\sigma^2)}$
 - Assume observation errors are independent and identically distributed (iid) and $\varepsilon_i \sim N(0, \sigma^2)$.

Monodomain Analysis: **Uncertainty Quantification**

1.5

0.5

- Posterior densities: $\pi(\theta|M^{DFT})$
- Calibrated from DFT calculated energy

Monodomain Analysis: Uncertainty Propagation

Figure: (Left) Uncertainty propagation through energy model. (Right) uncertainty in normal stress in the x_1 direction. Stress response not shown for σ_{22} , σ_{33} , and σ_{23} .

03/26/2017

Polydomain Analysis: 180° Domain Walls

• Reported domain wall energy³ $E_{180^{\circ}} = 132 \frac{mJ}{m^2}$

Energy associated with domain wall

$$E_{180^{\circ}} = \int_{-\infty}^{\infty} (u - u_0) dx_1$$

- Domain wall width
 - Same order as lattice constant
 - $L_{180^{\circ}} \sim a \approx 3.9 \text{ Å}$

Figure: 180° domain wall – two distinct polarization regions. On the left (blue) we have polarization in the negative x_3 direction and on the right (red) the polarization is in the positive x_3 direction. The polarization switches by 180° as you pass through the domain wall.

3. Meyer, B. and Vanderbilt, D., "First-principles investigation of ferroelectricity in perovskite compounds," *Physical Review B* 49(9), 5828 (1994)

Polydomain Analysis: Theory

- Recall: $u(P_i, P_{i,j}, \varepsilon_{ij}) = u_M(\varepsilon_{ij}) + u_L(P_i) + u_C(P_i, \varepsilon_{ij}) + u_G(P_{i,j})$
- Gradient energy

$$u_{G} = \frac{g_{11}}{2} \left(P_{1,1}^{2} + P_{2,2}^{2} + P_{3,3}^{2} \right) + g_{12} \left(P_{1,1} P_{2,2} + P_{1,1} P_{3,3} + P_{2,2} P_{3,3} \right)$$

$$+\frac{g_{44}}{2}\left[\left(P_{1,2}+P_{2,1}\right)^2+\left(P_{1,3}+P_{3,1}\right)^2+\left(P_{2,3}+P_{3,2}\right)^2\right]$$

Governing equation

$$\begin{pmatrix} \frac{\partial u}{\partial P_{3,1}} \end{pmatrix}_{,1} - \frac{\partial u}{\partial P_3} = 0 \rightarrow 2(\alpha_1 - q_{11}\varepsilon_{33} - q_{12}(\varepsilon_{11} + \varepsilon_{22})) P_3 + 4\alpha_{11}P_3^3 + 6\alpha_{111}P_3^5 = g_{44}P_{3,12} + g_{$$

Polydomain Analysis: Theory

• Solution $P_{3}(x_{1}) = \frac{P_{0} \sinh\left(\frac{x_{1}}{\xi_{180}}\right)}{[A + \sinh^{2}(\frac{x_{1}}{\xi_{180}})]^{1/2}}$

Where

$$\xi_{180} = \frac{\sqrt{g_{44}}}{P_0 (6\alpha_{111}P_0^2 + 2\alpha_{11})^{\frac{1}{2}}}$$
$$A = \frac{(3\alpha_{111}P_0^2 + \alpha_{11})}{2\alpha_{111}P_0^2 + \alpha_{11}}$$

Polydomain Analysis: Uncertainty Quantification

- Exchange parameter uncertainty is small
 - Deviation ~ $\mathcal{O}(10^{-7})$
 - Calibrating scalar energy

 How does uncertainty from monodomain affect the energy? Figure: (a) Marginal posterior density for g_{44} . (b) Sample chain from MCMC simulation of parameter g_{44} . The axes labels are: $[g_a, g_b] = [5.587741948 \times 10^{-6}, 5.587741962 \times 10^{-6}]$.

Polydomain Analysis: Uncertainty Propagation

Figure: 180° domain wall – excess energy along x_1 axis as you go through the domain wall.

Conclusions & Future Work:

- Conclusions:
 - Quantified uncertainty in phase field model parameters.
 - Propagated uncertainty to assess model limitations.
 - Compared theoretical solution of 180° domain wall with finite element model.
- Future Work:
 - Uncertainty analysis of 90° domain wall?
 - Parameter correlation: monodomain & polydomain structures?
 - Global sensitivity⁴?

^{4.} Collaborative effort with Dr. Ralph Smith and Lider Leon at North Carolina State University.

Acknowledgements

Special thanks to

- Ralph Smith & Lider Leon, NCSU Mathematics Department
- Justin Collins, FSU Mechanical Engineering Department

P.R.M. & W.S.O gratefully acknowledges support from NSF CDS&E awards (CMMI grants 1306320 and 1306290).

