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Motivation
◦ Applications	of	VHB	4910	
(made	by	3M)
◦ Robotics	&	Flow	Control1

◦ Multi-physics
◦ Explore	calibration	of	shared	characteristics	

No	Voltage Voltage	Applied

Elastomer
Low	stiffness	electrode
(Carbon	grease)

Figure:	iSprawl robotic	platform	(from	Newton,	J.,	“Design	and	Characterization	of	a	Dielectric	
Elastomer	Based	Variable	Stiffness	Mechanism	for	Implementation	onto	a	Dynamic	Running	Robot,”	
(2014),	Figure	2.11	and	Figure	4.5.)
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Figure:	Hays,	et	al.	"Aerodynamic	Control	of	Micro	Air	Vehicle	Wings	Using	Electroactive
Membranes,"	J.	Mater.	Syst.	Struct.,	v.	24(7),	pp.	862-878,	2013.

1. O’Halloran,	Ailish,	Fergal	O’Malley,	and	Peter	McHugh.	“A	review	on	dielectric	elastomer	actuators,	technology,	applications,	and	challenges.”	Journal	of	Applied	Physics 104.7	(2008):	071101.	



Motivation
• Project
• Uncertainty	quantification	has	been	applied	to	a	wide	variety	of	disciplines:
• Atomistic	Potentials1,	Computational	Fluid	Dynamics2,	Weather	Prediction3

• Less	work	done	in	quantifying	uncertainty	of	material	models.
• Previous	work	has	been	done	to	characterize	the	hysteresis	in	VHB	4910	through	
of	series	of	uni-axial	experiments4.		

• Quantifying	uncertainty	under	multi-axial	electromechanical	loading.

• Challenges
• Model	calibration	of	two	different	types	of	data
• Appropriate	model
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Experimental	Setup
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•Mechanical:	Transverse	loading
• Load	monitored	for	prescribed	displacement
• Triangular	load/unload	cycle
• Test	cases:	0-6	kV

Figure:	Transverse	load	data.		(a)	Complete	load/unload	cycle	and	(b)	load	cycle	used	for	
model	calibration.

Figure:	Schematic	of	problem	geometry,	transverse	loading	and	material	deformation.		(a)	
VHB	Specimen	(b)	Non-deformed	configuration	(c)	Overhead	view	(d)	Deformed	
configuration.

(a) (b)

(c) (d)

𝑉



Experimental	Setup
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• Electrical:	Material	Capacitance
• Sawyer-Tower	circuit
• Connected	in	series	with	a	known	capacitor
• Performed	in	non-deformed	configuration

Figure:	Sawyer-Tower	circuit	with	VHB	in	series	with	153	𝜇𝐹 capacitor	(𝐶%).		VHB	
specimen	measured	from	non-deformed	configuration.		

𝑉𝐶

𝐶% 𝑉%

A	sinusoidal	voltage	is	applied	at	
a	frequency	of	1	Hz	for	5	cycles.		
The	voltage	is	sent	through	a	
linear	TREK	amplifier	and	
measurements	across	the	
capacitor	are	performed	with	a	
Keithley 6517A	electrometer.

Figure:	Data	collected	from	Sawyer-Tower	circuit.		(Left)	Electric	displacement	plotted	as	
a	function	of	the	nominal	field	and	(Right)	electric	displacement	as	a	function	of	index	
from	a	single	loop.
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Modeling	– Transverse	Load
• Transverse	load1

𝐹 = 2𝜋 sin 𝜃 𝑟𝑡𝜎0
• Cauchy	stress	in	radial	direction.		Application	of	electric	field	in	transverse	direction	
decreases	the	Cauchy	stress2.

𝜎0 = 𝜎01 − 𝜅4𝜖%𝐸78

Relative	permittivity,	𝜅4,	is	assumed	independent	of	deformation
• Nonaffine hyperelastic stress	assuming	incompressibility3
• 𝜆:,7<7 = 𝜆:,=4>𝜆: and		∑ 𝜆:,7<7 = 1	�

: where	𝑖 = 𝑙, 𝑐, 𝑡 (radial,	circumferential,	thickness)

𝜎01 =
𝐺G
3 𝜆0,7<78 −

1
𝜆G,=4>8 𝜆0,7<78

9𝜆JKL8 − 𝐼N
3𝜆JKL8 − 𝐼N

+	𝐺> 𝜆0,7<7 1 + 𝜆G,=4> −
1 + 𝜆G,=4>
𝜆G,=4>𝜆0,7<7
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Modeling	– Electric	Displacement
• Polarization	model1

𝑃̈7 + 𝛾𝑃̇7 +
𝐾
𝑚𝑃7 =

𝑁𝑒8

𝑚 𝐸7
• True	electric	displacement	is	related	to	the	electric	field	by

𝐷7 = 𝜖%𝐸7 + 𝑃7
Note	the	nominal	and	true	electric	field	should	be	the	same	under	the	assumption	that	
the	membrane	does	not	buckle.
• Ignoring	2nd order	rate	effects	yields	the	rate-dependent	dielectric	constitutive	model

𝜏𝐷̇7 + 𝐷7 = 𝜏𝜖%𝐸̇7 + 𝜅4𝜖%𝐸7
where	𝜅4𝜖% = 1 + Z>[

\]^
	and	𝜏 = _J

\
.
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Bayesian	Uncertainty	Analysis
• Calibration:	Markov	Chain	Monte	Carlo	(MCMC)
• Random	sampling

• Bayes’	Relation

• 𝜋 𝜃 𝑀aK7K = = b|d e^ d
∫ = b|d	
ℝh e^ d ad

• Likelihood:	𝑝 𝑀 𝜃 = 	𝑒j ∑ bklml : jb :;d
[
/(8q[)s

tuv

• Assume	observation	errors	are	independent	and	identically	distributed	(iid)	and	𝜀:~𝑁(0, 𝜎8).

• Decoupled	Problem:
1)	Use	electric	displacement	data:		𝜃 = [𝜅4, 𝜏]
2)	Use	transverse	load	data	with	no	applied	voltage:		𝜃 = [𝐺G, 𝐺>,	𝜆JKL]
3)	Use	all	data	from	both	experiments	– reformulate	model	to	energy:		𝜃 = [𝐺G, 𝐺> ,	𝜆JKL, 𝜅4, 𝜏]
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𝜋 𝜃 𝑀aK7K - posterior	density
𝜋% 𝜃 - prior	density	(a	priori knowledge)
𝑝 𝑀|𝜃 - likelihood	of	model	given	parameters



Results	(1)
• Electric	Displacement
• Magnitude	of	electric	

displacement	increases	with	
applied	voltage

• Prediction	intervals	shown	in	light	
grey	and	credible	intervals	shown	
in	dark	grey
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𝑉 = 5	𝑘𝑉 𝑉 = 5	𝑘𝑉 (Zoomed-In)

𝑉 = 4	𝑘𝑉𝑉 = 2	𝑘𝑉



Parameter	Distributions	&	Chains	(1)
• Distribution	developed	
from	sampled	parameters.
• Posterior	densities	shown	
for	[𝜅4, 𝜏].	

• Chain	panels
• Both	parameters	“burned-in”
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Results	(2)
• Transverse	load
• Used	average	𝜅4 from	first	

calibration
• Under-predicting	the	effects	

of	electrostriction

9/16/15 12

𝑉 = 0	𝑘𝑉 𝑉 = 2	𝑘𝑉

𝑉 = 4	𝑘𝑉 𝑉 = 5	𝑘𝑉



Results	(3)
• Energy	Formulation
• Used	both	experimental	

data	sets
• Simultaneous	model	

calibration
• Uncertainty	in	dielectric	

model	increased
• Transverse	load	model	

improved.
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𝑉 = 2	𝑘𝑉 𝑉 = 5	𝑘𝑉

𝑉 = 2	𝑘𝑉 𝑉 = 5	𝑘𝑉



Model	Calibration
Analysis Units (1) (2) (3)

𝐺G kPa - 37.3 36.0

𝐺> kPa - 6.82 0.51

𝜆JKL - - 4.04 3.69

𝜅4 - 4.30 - 5.51

𝜏 s	 0.013 - 0.008

• Calibrated	mean	model	parameters	
shown	for	three	cases:
1)	Used	and	electric	displacement	data:	𝜃 = [𝜅4, 𝜏]
• Previous	studies:	𝜅4 between	2.6	and	4.7
2)	Used	transverse	load	data	with	no	applied	
voltage:		𝜃 = [𝐺G, 𝐺>,	𝜆JKL]
3)	Used	transverse	load	data	and	electric	
displacement	data:	𝜃 = [𝐺G, 𝐺>,	𝜆JKL, 𝜅4, 𝜏]
• Model	reformulated	to	calculate	energy	to	ensure	
common	units.
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Conclusions
• Experimentally	characterized	
• Transverse	loading
• Dielectric	response
• Simulated	response	and	analyzed	uncertainty
•Applied	different	techniques	for	model	calibration

• Future	Work
• Inhomogeneous	structural	model1
• Deformation-dependent	permittivity
• Assess	appropriateness	of	data	fusion:	scaling	and	sensitivity
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