Uncertainty Analysis of Dielectric Elastomer Membranes Under Multi-Axial Loading

PAUL MILES¹, ADRIANE GUETTLER², M. YOUSUFF HUSSAINI³, WILLIAM OATES⁴

Department of Mechanical Engineering^{1,2,4} Florida Center for Advanced Aero-Propulsion (FCAAP) Florida A & M and Florida State University, Tallahassee, FL 32310

> Department of Mathematics³ Florida State University, Tallahassee, FL 32310

Outline

- Motivation
- Experiment:
 - Setup
 - Results
- Model:
 - Development
 - Calibration
- Conclusions

Motivation

- Applications of VHB 4910 (made by 3M)
 - Robotics & Flow Control¹
- Multi-physics
 - Explore calibration of shared characteristics

Figure: iSprawl robotic platform (from Newton, J., "Design and Characterization of a Dielectric Elastomer Based Variable Stiffness Mechanism for Implementation onto a Dynamic Running Robot," (2014), Figure 2.11 and Figure 4.5.)

Figure: Hays, et al. "Aerodynamic Control of Micro Air Vehicle Wings Using Electroactive Membranes," J. Mater. Syst. Struct., v. 24(7), pp. 862-878, 2013.

1. O'Halloran, Ailish, Fergal O'Malley, and Peter McHugh. "A review on dielectric elastomer actuators, technology, applications, and challenges." Journal of Applied Physics 104.7 (2008): 071101.

Motivation

Project

- Uncertainty quantification has been applied to a wide variety of disciplines:
 - Atomistic Potentials¹, Computational Fluid Dynamics², Weather Prediction³
- Less work done in quantifying uncertainty of material models.
- Previous work has been done to characterize the hysteresis in VHB 4910 through of series of uni-axial experiments⁴.
- Quantifying uncertainty under multi-axial electromechanical loading.
- Challenges
 - Model calibration of two different types of data
 - Appropriate model

- 1. Frederiksen, Søren L., et al. "Bayesian ensemble approach to error estimation of interatomic potentials." Physical review letters 93.16 (2004): 165501.
- 2. Croicu, Ana-Maria, et al. "Robust Airfoil Optimization Using Maximum Expected Value and Expected Maximum Value Approaches." AIAA journal 50.9 (2012): 1905-1919.
- 3. Wilks, Daniel S. Statistical methods in the atmospheric sciences. Vol. 100. Academic press, 2011.
- 4. Miles, Paul, et al. "Bayesian uncertainty analysis of finite deformation viscoelasticity." Mechanics of Materials 91 (2015): 35-49.

Experimental Setup

- Mechanical: Transverse loading
 - Load monitored for prescribed displacement
 - Triangular load/unload cycle
 - Test cases: 0-6 kV

Figure: Schematic of problem geometry, transverse loading and material deformation. (a) VHB Specimen (b) Non-deformed configuration (c) Overhead view (d) Deformed configuration.

Figure: Transverse load data. (a) Complete load/unload cycle and (b) load cycle used for model calibration.

Experimental Setup

- Electrical: Material Capacitance
 - Sawyer-Tower circuit
 - Connected in series with a known capacitor
 - Performed in non-deformed configuration

> A sinusoidal voltage is applied at a frequency of 1 Hz for 5 cycles. The voltage is sent through a linear TREK amplifier and measurements across the capacitor are performed with a Keithley 6517A electrometer.

Figure: Data collected from Sawyer-Tower circuit. (Left) Electric displacement plotted as a function of the nominal field and (Right) electric displacement as a function of index from a single loop.

Figure: Sawyer-Tower circuit with VHB in series with 153 μF capacitor (C_0). VHB specimen measured from non-deformed configuration.

 V_0

С

 C_0

0

Modeling – Transverse Load

• Transverse load¹

$$F = 2\pi \sin(\theta) r t \sigma_l$$

 Cauchy stress in radial direction. Application of electric field in transverse direction decreases the Cauchy stress².

$$\sigma_l = \sigma_l^H - \kappa_r \epsilon_0 E_t^2$$

Relative permittivity, κ_r , is assumed independent of deformation

Nonaffine hyperelastic stress assuming incompressibility³

•
$$\lambda_{i,tot} = \lambda_{i,pre}\lambda_i$$
 and $\sum_i \lambda_{i,tot} = 1$ where $i = l, c, t$ (radial, circumferential, thickness)
 $\sigma_l^H = \frac{G_c}{3} \left(\lambda_{l,tot}^2 - \frac{1}{\lambda_{c,pre}^2 \lambda_{l,tot}^2} \right) \left(\frac{9\lambda_{max}^2 - I_1}{3\lambda_{max}^2 - I_1} \right) + G_e \left(\lambda_{l,tot} \left(1 + \lambda_{c,pre} \right) - \frac{1 + \lambda_{c,pre}}{\lambda_{c,pre} \lambda_{l,tot}} \right)$

- 1. Rizzello, Gianluca, et al. "Dynamic Electromechanical Modeling of a Spring-Biased Dielectric Electroactive Polymer Actuator System." ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014.
- 2. Zhao, Xuanhe, Wei Hong, and Zhigang Suo. "Electromechanical hysteresis and coexistent states in dielectric elastomers." Physical review B 76.13 (2007): 134113.
- 3. Davidson, Jacob D., and N. C. Goulbourne. "A nonaffine network model for elastomers undergoing finite deformations." Journal of the Mechanics and Physics of Solids 61.8 (2013): 1784-1797.

Modeling – Electric Displacement

Polarization model¹

$$\ddot{P}_t + \gamma \dot{P}_t + \frac{K}{m} P_t = \frac{Ne^2}{m} E_t$$

• True electric displacement is related to the electric field by

$$D_t = \epsilon_0 E_t + P_t$$

Note the nominal and true electric field should be the same under the assumption that the membrane does not buckle.

• Ignoring 2nd order rate effects yields the rate-dependent dielectric constitutive model

$$\tau \dot{D}_t + D_t = \tau \epsilon_0 \dot{E}_t + \kappa_r \epsilon_0 E_t$$

where
$$\kappa_{r}\epsilon_{0} = 1 + \frac{Ne^{2}}{K\epsilon_{0}}$$
 and $\tau = \frac{\gamma m}{K}$.

^{1.} Fowles, Grant R. Introduction to modern optics. Courier Corporation, 2012.

Bayesian Uncertainty Analysis

- Calibration: Markov Chain Monte Carlo (MCMC)
 - Random sampling
- Bayes' Relation

•
$$\pi(\theta | M^{data}) = \frac{p(M|\theta)\pi_0(\theta)}{\int_{\mathbb{R}^p} p(M|\theta)\pi_0(\theta)d\theta}$$

 $\pi(\theta | M^{data})$ - posterior density $\pi_0(\theta)$ - prior density (*a priori* knowledge) $p(M|\theta)$ - likelihood of model given parameters

- Likelihood: $p(M|\theta) = e^{-\sum_{i=1}^{n} [M^{data}(i) M(i;\theta)]^2/(2\sigma^2)}$
 - Assume observation errors are independent and identically distributed (iid) and $\varepsilon_i \sim N(0, \sigma^2)$.
- Decoupled Problem:
 - 1) Use electric displacement data: $\theta = [\kappa_r, \tau]$
 - 2) Use transverse load data with no applied voltage: $\theta = [G_c, G_e, \lambda_{max}]$
 - 3) Use all data from both experiments reformulate model to energy: $\theta = [G_c, G_e, \lambda_{max}, \kappa_r, \tau]$

-1

V = 2 kV

Data

Model

Results (1)

Electric Displacement

V = 4 kV

- Data

Model

2

0

Parameter Distributions & Chains (1)

- Distribution developed from sampled parameters.
 - Posterior densities shown for [κ_r, τ].
- Chain panels
 - Both parameters "burned-in"

Results (2)

- **Transverse** load
 - Used average κ_r from first calibration
 - Under-predicting the effects of electrostriction

0kV

2kV

4kV 6kV

2

Displacement [mm]

Transverse Load [N] 9.0 7.0 7.0

0.2

0 L 0

Results (3)

- Energy Formulation
 - Used both experimental data sets
 - Simultaneous model calibration
 - Uncertainty in dielectric model increased
 - Transverse load model improved.

Model Calibration

- Calibrated mean model parameters shown for three cases:
 - 1) Used and electric displacement data: $\theta = [\kappa_r, \tau]$
 - Previous studies: κ_r between 2.6 and 4.7
 - 2) Used transverse load data with no applied voltage: $\theta = [G_c, G_e, \lambda_{max}]$
 - 3) Used transverse load data and electric displacement data: $\theta = [G_c, G_e, \lambda_{max}, \kappa_r, \tau]$
 - Model reformulated to calculate energy to ensure common units.

Analysis	Units	(1)	(2)	(3)
G _c	kPa	-	37.3	36.0
G _e	kPa	-	6.82	0.51
λ_{max}	-	-	4.04	3.69
κ _r	-	4.30	-	5.51
τ	S	0.013	-	0.008

1. Wissler, Michael, and Edoardo Mazza. "Electromechanical coupling in dielectric elastomer actuators." Sensors and Actuators A: Physical 138.2 (2007): 384-393.

Conclusions

- Experimentally characterized
 - Transverse loading
 - Dielectric response
- Simulated response and analyzed uncertainty
- Applied different techniques for model calibration

Future Work

- Inhomogeneous structural model¹
- Deformation-dependent permittivity
- Assess appropriateness of data fusion: scaling and sensitivity

^{1.} Tezduyar, T. E., L. T. Wheeler, and L. Graux. "Finite deformation of a circular elastic membrane containing a concentric rigid inclusion." International journal of non-linear mechanics 22.1 (1987): 61-72.

Acknowledgements

- Affiliated universities
 - Florida A&M University
 - Florida State University

- W.S.O. and P.R.M. gratefully acknowledge support from an Army Research Collaborative Technology Alliance (R-CTA) and the Army Research Office through grant W911NF-13-1-0146, program manager Matt Munson.
- W.S.O. and A.G. also appreciate support from the NSF CAREER (028796) and CMMI grant (032491).

