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Introduction:
• Dielectric elastomers (DE) have demonstrated promising properties for applications ranging 

from actuation, sensing, and energy harvesting [1].  By placing a compliant electrode on either 

side of these materials, one can apply voltage across the material thickness causing large 

electrostriction (i.e., electric field induced strain on the order of 100%).  

• Considering the light weight properties of DE and its compact actuation mechanism, these soft 

materials are well suited for various platforms, including multi-modal legged robots, micro air 

vehicles, energy harvesting, biomedicine, and flexible electronics.  

• Legged robots struggle to move on different surfaces as their components are typically 

designed for a single terrain.  If a compliant structure could be incorporated into the leg 

mechanism, it could potentially allow for seamless transfer on to different terrains.

• In the area of flow control, one can similarly control the membrane’s structure with an 

electrostatic field to alter the fluid-structure interactions.  A more compliant membrane (as a 

result of electrostriction) will be significantly influenced by the surrounding flow physics.

• DE offer a route towards accomplishing these goals; however, adaptive structure designs and 

real-time control require accurate, robust, and numerically efficient predictions of the 

constitutive behavior and dynamic structure response.  Whereas advanced electrostriction has 

been demonstrated, these elastomeric materials produce rate dependent behavior which has 

largely been neglected.  

Figure 1: Activated electrodes compress, resulting in a 

decrease in tension and allowing for the outward 

expansion of the material. 

Figure 3: Wind tunnel testing of wing-shaped membrane [2].  
Figure 4: iSprawl robotic platform.  Legs move up and 

down in such a way to provide forward motion.
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Figure 2: Model validation of electric displacement 

defined as a function of the nominal electric field [3].

Approach: Material Modeling:
Total Energy Density:
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Nonaffine Hyperelastic Free Energy [4]:
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where the invariant is 𝐼1 = 𝜆𝑖𝜆𝑖 .

Nonlinear Viscoelastic Energy:
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Membrane Structure Modeling:
Transverse load [5]

𝐹 = 2𝜋 sin 𝜃 𝑟𝑡𝜎𝑙

where 𝜎𝑙 Cauchy stress in radial direction.  Application of 

electric field in transverse direction decreases the Cauchy 

stress [5,6].
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Relative permittivity, 𝜅𝑟, is assumed independent of 

deformation.  The  nonaffine hyperelastic stress is
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Figure 6: Membrane structure – a) Non-deformed 

configuration. b) Structure deformed a distance 𝛿.  
Load response, 𝐹, is measured experimentally and 

modeled [3].  The electrostatic potential is denoted 

by 𝜙.  

Beginning from a nonlinear rate-dependent model we integrate the 

constitutive equations into a finite deforming electroactive membrane 

structure.  From there we compare with experiments and use Bayesian 

uncertainty quantification to assess model uncertainty and error 

propagation.  We use information gained from the uncertainty analysis to 

reassess our material model and continue improving our overall structural 

model. 
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Figure 5: Flow chart for approach to model development.

• It was shown that the nonlinear viscoelastic model quantified the rate-dependent deformation of VHB 4910 with the greatest accuracy, as it accounted for the behavior at all stretch rates with a
single set of hyperelastic parameters.

• The time response of the nonlinear viscoelastic model follows a power law with respect to the deformation rate (See Figure 11). This opens up opportunities to explore origins for the power
law based on the underlying polymer network physics.

• Uncertainty associated with model prediction in nonlinear rate dependent regimes is quantified using Bayesian statistics and its errors are propagated through the model to assess model
accuracy with respect to experiments.

• These results show potential for applying controls to a robotic platform as the electrostrictive behavior causes significant change in the membrane stiffness as a function of applied field.
Effective application of controls could assist a robot in adjusting to different terrains simply by applying different fields across the membrane.

• Determining the appropriate characteristics to enhance a robotic platform is currently under investigation to quantify fatigue behavior under electromagnetic loading. The use of Bayesian
statistics is ideal to determine if posterior parameter densities evolve during fatigue which would lead to developments of more robust control algorithms and filter designs.

Figure 11: Power law viscoelastic 

behavior with respect deformation rate.

Experiments:

Figure 9: Bayesian posterior densities based on a nonlinear 

viscoelastic model (𝛾, 𝜂 are shown as examples).

Figure 7: (Top left) Uniaxial 

experiments clearly show rate-

dependent effects [7]. (Top Right) 

Transverse loading of the membrane 

structure (Fig. 6) decreases as 

electrostriction increases. (Bottom 

Right) Electric displacement cycles in 

response to a sinusoidal applied 

voltage.

Figure 8: Model validation and error 

propagation for - (Top left) uniaxial 

experiments at fastest rate of 

deformation. (Top right) transverse 

loading with no electrostriction. 

(Bottom right) electric displacement 

measurements for sinusoidal applied 

voltage (amplitude of 5kV).  Note that 

the grey regions represent 95% 

credible intervals.

Parameter Estimation:
Markov Chain Monte Carlo – MCMC

Assume unknown model parameters are random variables.
• Uniaxial, viscoelasticity model: 𝜃 = [𝐺𝑐 , 𝐺𝑒, 𝜆𝑚𝑎𝑥, 𝛾, 𝜂, 𝛽]
• Transverse load model: 𝜃 = [𝐺𝑐 , 𝐺𝑒, 𝜆𝑚𝑎𝑥, 𝜅𝑟]
• Electric displacement model: 𝜃 = [𝜅𝑟 , 𝜏]

Bayesian Uncertainty Quantification [8]:
Inverse problem using Bayes’ Relation

𝜋 𝜃 𝑀𝑑𝑎𝑡𝑎 =
𝑝 𝑀|𝜃 𝜋0 𝜃

 ℝ𝑝 𝑝 𝑀|𝜃 𝜋0 𝜃 𝑑𝜃

𝜋 𝜃 𝑀𝑑𝑎𝑡𝑎 - posterior density (distribution of parameter in light of data)

𝜋0 𝜃 - prior density (a priori knowledge about the parameter values)

𝑝 𝑀|𝜃 - likelihood of model given parameters

Figure 10: Chain panels based on a nonlinear viscoelastic 

model (𝛾, 𝜂 are shown as examples).  The plots show the space 

sampled during parameter estimation.  The consistent bounds 

imply a converged solution.

• Uniaxial load/unload cycles using Very High Bond (VHB) 4910.

• Transverse loading of membrane structure (See Figure 6).

• Electric displacement measurements are taken on membrane 

structure in non-deformed configuration.  Placed in Sawyer-Tower 

circuit with a known capacitor.
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