
Python-Based	Metropolis	Algorithms	to	Infer	the	Location	and	
Intensity	of	an	Urban	Radiation	Source

• Implement	Python-based	Metropolis	algorithms	to	support	Bayesian	inference	
for	urban	radiation	source	detection	and	localization.

• Sampling	methods:
• Metropolis	(MH)
• Adaptive	Metropolis	(AM)
• Delayed	Rejection	(DR)
• Delayed	Rejection	Adaptive	Metropolis	(DRAM)

• Adaptation	of	Marko	Laine’s	MATLAB	toolbox,	mcmcstat.

Objectives

• Statistical	model:
Υ" = 𝑓" 𝑄 + 𝜀" ,				𝑖 = 1,… , 𝑛 ,				𝜀" iid

where	Υ", 𝜀", and	𝑄 are	random	variables	representing	measurements,	
measurement	errors,	and	parameters	with	realizations	𝑣", 𝜖",	and	𝑞.		Parameter	
dependent	model	is	denoted	by	𝑓"(𝑄).
• Likelihood	Function:

𝜋 𝑣 𝑞 = 	
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where	𝑆𝑆@ = ∑ 𝑣" − 𝑓" 𝑞 67
"CD is	the	sum	of	squares	error.

• Prediction	Intervals:	Sample	from	𝜌F 𝑞 and	𝜌G(𝜖) and	propagate	through	
model.

Statistical	Model

• Model:	Photon	counts	at	a	detector	site	given	a	source	location	and	intensity:

Γ" =
Δ𝑡"𝜖"𝐴"𝐼
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• Here	𝑓" 𝑄 = Γ",	where	𝑄 = 𝑥O, 𝑦O, 𝐼 ;	i.e.,	source	location	and	intensity.
• For	more	discussion	of	the	physics	for	this	problem,	see	the	talk	by	Ralph	

Smith:	“Mobile	Sensor	Network	Design	for	Radiation	Detection	in	an	Urban	
Environment.”

Figure:	(Left)	Simulated	250	m	x	180	m	block	of	downtown	Washington	D.C.		
(Right)	Burned-In	chains,	posterior	densities	from	parameter	sampling.
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Code	Structure

Conclusions	&	Future	Work
• Python-based	algorithms	return	comparable	results	to	the	MATLAB	toolbox	at	

significantly	reduced	computational	costs	for	Python-based	models.
• Update	support	documents	and	upload	demo	files	to	website:	

https://prmiles.wordpress.ncsu.edu/research/

• Funding	for	this	research	provided	by	the	Consortium	for	Nonproliferation	
Enabling	Capabilities	(CNEC)
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• User	provides	calibration	data,	settings	for	statistical	model	and	parameters,	
and	specifies	options	associated	with	available	features	of	the	Metropolis	
algorithms.	

• Primary	features	of	user-interface	

1. Choose	initial	parameter	value	and	specify	prior	𝜋O 𝑞
2. Construct	covariance	estimate	𝑉 and	Cholesky decomposition	𝑅 = 𝑐ℎ𝑜𝑙(𝑉).
3. For	𝑘 = 1,… ,𝑀 (#	of	MCMC	simulations)
a.	Construct	candidate:	𝑞∗ = 𝑞b:D + 𝑅𝑧, where	𝑧~𝑁(0,1).
b.	Compute	the	ratio:	

𝑟 𝑞∗ 𝑞b:D = g 𝑞∗ 𝑣
g 𝑞b:D 𝑣 = g 𝑣 𝑞∗ gh @∗

g 𝑣 𝑞b:D gh @ijk
,

c.	If	𝑈 0,1 < min	(1, 𝑟),
set	𝑞b = 𝑞∗

else	
set	𝑞b = 𝑞b:D.
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