NC STATE UNIVERSITY

Python-Based Metropolis Algorithms to Infer the Location and Intensity of an Urban Radiation Source

Paul Miles¹, Jason Hite², Isaac Michaud³, Katie Schmidt⁴, John Mattingly², Ralph Smith¹

¹Department of Mathematics, North Carolina State University

²Department of Nuclear Engineering, North Carolina State University

³Department of Statistics, North Carolina State University

⁴Applied Statistics Group, Lawrence Livermore National Laboratory

	Objectives		Code Structure
•	Implement Python-based Metropolis algorithms to support Bayesian inference	•	User provides calibration data, settings for statistical model and parameters,
	for urban radiation source detection and localization.		and specifies options associated with available features of the Metropolis
•	Sampling methods:		algorithms.

- Metropolis (MH)
- Adaptive Metropolis (AM)
- Delayed Rejection (DR)
- Delayed Rejection Adaptive Metropolis (DRAM)
- Adaptation of Marko Laine's MATLAB toolbox, mcmcstat.

Statistical Model

• Statistical model:

 $\Upsilon_i = f_i(Q) + \varepsilon_i$, i = 1, ..., n , ε_i iid

where $\Upsilon_i, \varepsilon_i$, and Q are random variables representing measurements, measurement errors, and parameters with realizations v_i, ε_i , and q. Parameter dependent model is denoted by $f_i(Q)$.

• Likelihood Function:

$$\pi(v|q) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-SS_q/2\sigma^2}$$

where $SS_q = \sum_{i=1}^n [v_i - f_i(q)]^2$ is the sum of squares error.

• Prediction Intervals: Sample from $\rho_Q(q)$ and $\rho_{\varepsilon}(\epsilon)$ and propagate through model.

Basic Metropolis Algorithm

Initial Error

Variance, ε_i

DATA

Weights

User Defined

SETTINGS

Environment."

Figure: (Left) Simulated 250 m x 180 m block of downtown Washington D.C. (Right) Burned-In chains, posterior densities from parameter sampling.

Enabling Capabilities (CNEC)

References

- H. Haario, M. Laine, A. Mira, and E. Saksman. "DRAM: Efficient Adaptive MCMC." *Statistics and Computing* 16, no. 4 (2006): 339-354.
- H. Haario, E. Saksman, and J. Tamminen. "An Adaptive Metropolis Algorithm." *Bernoulli* 7, no. 2 (2001): 223-242.
- R. Ştefănescu, K. Schmidt, J. Hite, R. Smith, and J. Mattingly. "Hybrid Optimization and Bayesian Inference Techniques for a Non-Smooth Radiation Detection Problem." *International Journal for Numerical Methods in Engineering* (2017).
- R. Smith. *Uncertainty Quantification: Theory, Implementation, and Applications*. Vol. 12. SIAM, 2014.

